Loading…

3-D Virtual Seismology

We create virtual sources and receivers in a 3-D subsurface using the previously derived single-sided homogeneous Green's function representation. We employ Green's functions and focusing functions that are obtained using reflection data at the Earth's surface, a macrovelocity model,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-15
Main Authors: Brackenhoff, Joeri, Thorbecke, Jan, Wapenaar, Kees
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We create virtual sources and receivers in a 3-D subsurface using the previously derived single-sided homogeneous Green's function representation. We employ Green's functions and focusing functions that are obtained using reflection data at the Earth's surface, a macrovelocity model, and the Marchenko method. The homogeneous Green's function is Green's function superposed with its time-reversal. Unlike the classical homogeneous Green's function representation, our approach requires no receivers on an enclosing boundary; however, it does require the source signal to be symmetric in time. We demonstrate that, in 3-D, the single-sided representation is an improvement over the classical representation by applying the representations to numerical data. We retrieve responses to virtual point sources with an isotropic and with a double-couple radiation pattern and compare the results to a directly modeled reference result. We also demonstrate the application of the single-sided representation for retrieving the response to a virtual rupture that consists of a superposition of double-couple point sources. This is achieved by obtaining the homogeneous Green's function for each source separately before they are transformed to the causal Green's function, time-shifted, and superposed. The single-sided representation is also used to monitor the complete wavefield that is caused by a numerically modeled rupture. However, the source signal of an actual rupture is not symmetric in time, and the single-sided representation can, therefore, only be used to obtain the causal Green's function. This approach leaves artifacts in the final result; however, these artifacts are limited in space and time.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2021.3076292