Loading…

Numerical and Experimental Investigations of the Thermal Management of Power Electronics With Liquid Metal Mini-Channel Coolers

Thermal management became a limiting factor in the development of high-power electronic devices, and new methods of cooling are required. Therefore, the use of liquid gallium alloys, whose thermal conductivity (approximately 28 W/m/K) is 40 times greater than thermal conductivity of water, is introd...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2013-05, Vol.49 (3), p.1421-1429
Main Authors: Tawk, M., Avenas, Y., Kedous-Lebouc, A., Petit, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermal management became a limiting factor in the development of high-power electronic devices, and new methods of cooling are required. Therefore, the use of liquid gallium alloys, whose thermal conductivity (approximately 28 W/m/K) is 40 times greater than thermal conductivity of water, is introduced. In the first part of this paper, we present a numerical modeling and an experimental study of a mini-channel liquid metal cooler. In these experiments, the working fluid is moved via an electromagnetic pump. Numerical and experimental results are compared. Then, a numerical study dealing with the influence of the thermal conductivity of the cooler material is conducted, and a discussion on the use of classical convective heat transfer correlations is presented. In the last part, a numerical study of the cooling of a silicon chip is carried out. The cooling capacity of the liquid metal is compared with that of the water cooling, and very attractive results are obtained. The concept discussed in this paper is expected to provide a powerful cooling strategy for high-power-density electronic devices.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2013.2252132