Loading…

Chase and Track: Toward Safe and Smooth Trajectory Planning for Robotic Navigation in Dynamic Environments

In this article presents a trajectory planning approach toward safe and smooth robot motion in dynamic environments. We develop a hierarchical planning framework with a global planner generating the shortest path between the robot and the navigation target. Specially, a virtual target (VT) is set to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2023-01, Vol.70 (1), p.604-613
Main Authors: Wang, Chaoqun, Chen, Xiangyu, Li, Chenming, Song, Rui, Li, Yibin, Meng, Max Q.-H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article presents a trajectory planning approach toward safe and smooth robot motion in dynamic environments. We develop a hierarchical planning framework with a global planner generating the shortest path between the robot and the navigation target. Specially, a virtual target (VT) is set to run on the global path with a designed velocity. At the local level, the robot chases the VT and tracks the global path when traveling through the dynamic environment. We employ the model predictive control (MPC) framework for the local path generation. In particular, the prediction horizon of the MPC is adaptively changed concerning the distance between the robot and the VT. It implicitly reflects the crowdedness of the environment, which helps reduce the environmental uncertainty. Besides, we develop an event-triggered mechanism that executes the local plan aperiodically to release the computational burden. Based on the local chasing and tracking performance, we develop a global path replanning scheme in response to the untraversable area emerging in the dense environment. The developed framework is validated through extensive experiments in dynamic environments, demonstrating that the robot can reach the target faster and showcase a safer and smoother trajectory in the navigation.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2022.3148753