Loading…
A Pattern Driven Graph Ranking Approach to Attribute Extraction for Knowledge Graph
Attribution extraction refers to find the attributes for the instances of a given semantic class, which is essential to enhance the schema of a knowledge graph. To facilitate the attribution extraction from the query log, this article proposes a pattern driven graph ranking approach to jointly emplo...
Saved in:
Published in: | IEEE transactions on industrial informatics 2022-02, Vol.18 (2), p.1250-1259 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Attribution extraction refers to find the attributes for the instances of a given semantic class, which is essential to enhance the schema of a knowledge graph. To facilitate the attribution extraction from the query log, this article proposes a pattern driven graph ranking approach to jointly employ the pattern and context distribution information. First, a simple pattern on query text is applied to automatically acquire seed attributes. Then, a graph-based weight propagation is designed to rank the patterns by context distribution algorithm information. Experimental results show that, on a Chinese query log collected by Baidu, the automatically acquired seeds are more representative than the classical manually assembled seeds, achieving an improvement of 11.6% in MAP as compared to the baseline approach. And the graph-based ranking algorithm manipulates the two types of evidence more effectively, outperforming both the distributional similarity based baseline and the HITS algorithm by 29.2% and 11.3%, respectively. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2021.3073726 |