Loading…

Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network

The excitation and vibration triggered by the long-term operation of railway vehicles inevitably result in defective states of catenary support devices. With the massive construction of high-speed electrified railways, automatic defect detection of diverse and plentiful fasteners on the catenary sup...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2018-02, Vol.67 (2), p.257-269
Main Authors: Chen, Junwen, Liu, Zhigang, Wang, Hongrui, Nunez, Alfredo, Han, Zhiwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The excitation and vibration triggered by the long-term operation of railway vehicles inevitably result in defective states of catenary support devices. With the massive construction of high-speed electrified railways, automatic defect detection of diverse and plentiful fasteners on the catenary support device is of great significance for operation safety and cost reduction. Nowadays, the catenary support devices are periodically captured by the cameras mounted on the inspection vehicles during the night, but the inspection still mostly relies on human visual interpretation. To reduce the human involvement, this paper proposes a novel vision-based method that applies the deep convolutional neural networks (DCNNs) in the defect detection of the fasteners. Our system cascades three DCNN-based detection stages in a coarse-to-fine manner, including two detectors to sequentially localize the cantilever joints and their fasteners and a classifier to diagnose the fasteners' defects. Extensive experiments and comparisons of the defect detection of catenary support devices along the Wuhan-Guangzhou high-speed railway line indicate that the system can achieve a high detection rate with good adaptation and robustness in complex environments.
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2017.2775345