Loading…

A Model for Non-Stationary Time Series and its Applications in Filtering and Anomaly Detection

Time series measurements from sensing units (e.g., UWB ranging circuits) always suffer from uncertainties like noises, outliers, dropouts, and/or nonspecific anomalies. In order to extract the true information with high precision from the original corrupted measurements, the signal-model-based signa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-11
Main Authors: Wang, Shixiong, Li, Chongshou, Lim, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time series measurements from sensing units (e.g., UWB ranging circuits) always suffer from uncertainties like noises, outliers, dropouts, and/or nonspecific anomalies. In order to extract the true information with high precision from the original corrupted measurements, the signal-model-based signal pre-processing units embedded in sensing circuits are usually employed. However, for a general signal to observe, its signal model cannot be obtained so that the signal-model-based signal processing methods are not applicable. In this article, the time-variant local autocorrelated polynomial (TVLAP) model in the state space is proposed to model the dynamics of a non-stationary stochastic process (i.e., a signal or a time series), through which the model-based signal processing methods could be utilized to denoise, to correct the outliers/dropouts, and/or to identify anomalies contained in the measurements. Besides, the presented method can also be used in change point detection for a time series.
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2021.3059321