Loading…
Electrical Thermal Image Semantic Segmentation: Large-scale Dataset and Baseline
The fault diagnosis of electrical equipment plays a vital role in the safe operation of the power system. The task of electrical thermal image semantic segmentation is to segment all electrical equipment in thermal images, which is a key step in automatic fault diagnosis of electrical equipment. How...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fault diagnosis of electrical equipment plays a vital role in the safe operation of the power system. The task of electrical thermal image semantic segmentation is to segment all electrical equipment in thermal images, which is a key step in automatic fault diagnosis of electrical equipment. However, there lacks a large-scale dataset in this research field. Therefore, we contribute a large-scale dataset for electrical thermal image semantic segmentation. It contains 4839 thermal images and 17 types of electrical equipment. We provide pixel-level annotations to facilitate performance evaluation of different semantic segmentation algorithms. To provide a strong baseline, we propose a Cross Guidance Network (CGNet), which jointly infers semantic segmentation maps and edge extraction results in an end-to-end learning framework, for electrical thermal image semantic segmentation. Extensive experiments on our launched dataset demonstrate the effectiveness of the proposed CGNet, and it also achieves the best performance on the general thermal image segmentation dataset. We will release our code and dataset at https://github.com/guo49/CGNet-pytorch. |
---|---|
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2022.3214605 |