Loading…

LASOR: Learning Accurate 3D Human Pose and Shape via Synthetic Occlusion-Aware Data and Neural Mesh Rendering

A key challenge in the task of human pose and shape estimation is occlusion, including self-occlusions, object-human occlusions, and inter-person occlusions. The lack of diverse and accurate pose and shape training data becomes a major bottleneck, especially for scenes with occlusions in the wild. I...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2022, Vol.31, p.1938-1948
Main Authors: Yang, Kaibing, Gu, Renshu, Wang, Maoyu, Toyoura, Masahiro, Xu, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A key challenge in the task of human pose and shape estimation is occlusion, including self-occlusions, object-human occlusions, and inter-person occlusions. The lack of diverse and accurate pose and shape training data becomes a major bottleneck, especially for scenes with occlusions in the wild. In this paper, we focus on the estimation of human pose and shape in the case of inter-person occlusions, while also handling object-human occlusions and self-occlusion. We propose a novel framework that synthesizes occlusion-aware silhouette and 2D keypoints data and directly regress to the SMPL pose and shape parameters. A neural 3D mesh renderer is exploited to enable silhouette supervision on the fly, which contributes to great improvements in shape estimation. In addition, keypoints-and-silhouette-driven training data in panoramic viewpoints are synthesized to compensate for the lack of viewpoint diversity in any existing dataset. Experimental results show that we are among the state-of-the-art on the 3DPW and 3DPW-Crowd datasets in terms of pose estimation accuracy. The proposed method evidently outperforms Mesh Transformer, 3DCrowdNet and ROMP in terms of shape estimation. Top performance is also achieved on SSP-3D in terms of shape prediction accuracy. Demo and code will be available at https://igame-lab.github.io/LASOR/ .
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2022.3149229