Loading…

A 3D Object Recognition Method From LiDAR Point Cloud Based on USAE-BLS

Environmental perception provides the necessary information for unmanned ground vehicles to recognize and interact with surrounding objects. Velodyne light detection and ranging (LiDAR) is widely used for this purpose due to its significant advantages such as high precision and being uninfluenced by...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2022-09, Vol.23 (9), p.15267-15277
Main Authors: Tian, Yifei, Song, Wei, Chen, Long, Fong, Simon, Sung, Yunsick, Kwak, Jeonghoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Environmental perception provides the necessary information for unmanned ground vehicles to recognize and interact with surrounding objects. Velodyne light detection and ranging (LiDAR) is widely used for this purpose due to its significant advantages such as high precision and being uninfluenced by varying illuminations. However, the unstructured distribution of LiDAR point clouds always affects the performance of feature extraction and object recognition. Moreover, the numbers of parameters in most deep learning models of object recognition are very large and the training process costs lots of computation consumption. This paper proposes a broad learning system (BLS) variant with a unified space autoencoder (USAE) as a lightweight model to recognize 3D objects. When the proposed method was evaluated on the LiDAR point cloud dataset and ModelNet10 dataset, the experimental results indicated that the recognition accuracy of our USAE-BLS model was similar to that of state-of-the-art 3D object recognition models. Moreover, the USAE-BLS has a much smaller model size and shorter training time than that of the deep learning models.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2021.3140112