Loading…

Equivocations, Exponents, and Second-Order Coding Rates Under Various Rényi Information Measures

We evaluate the asymptotics of equivocations, their exponents as well as their second-order coding rates under various Rényi information measures. Specifically, we consider the effect of applying a hash function on a source and we quantify the level of non-uniformity and dependence of the compressed...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2017-02, Vol.63 (2), p.975-1005
Main Authors: Hayashi, Masahito, Tan, Vincent Y. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We evaluate the asymptotics of equivocations, their exponents as well as their second-order coding rates under various Rényi information measures. Specifically, we consider the effect of applying a hash function on a source and we quantify the level of non-uniformity and dependence of the compressed source from another correlated source when the number of copies of the sources is large. Unlike previous works that use Shannon information measures to quantify randomness, information, or uniformity, we define our security measures in terms of a more general class of information measures-the Rényi information measures and their Gallager-type counterparts. A special case of these Rényi information measure is the class of Shannon information measures. We prove tight asymptotic results for the security measures and their exponential rates of decay. We also prove bounds on the second-order asymptotics and show that these bounds match when the magnitudes of the second-order coding rates are large. We do so by establishing new classes non-asymptotic bounds on the equivocation and evaluating these bounds using various probabilistic limit theorems asymptotically.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2016.2636154