Loading…

The Shift Bound for Abelian Codes and Generalizations of the Donoho-Stark Uncertainty Principle

Let G be a finite abelian group. If f: G\rightarrow {\mathbf{C}} is a nonzero function with Fourier transform \hat {f} , the Donoho-Stark uncertainty principle states that | {\mathrm{ supp}}(f)|| {\mathrm{ supp}}(\hat {f})|\geq |G| . The purpose of this paper is twofold. First, we present the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2019-08, Vol.65 (8), p.4673-4682
Main Authors: Feng, Tao, Hollmann, Henk D. L., Xiang, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let G be a finite abelian group. If f: G\rightarrow {\mathbf{C}} is a nonzero function with Fourier transform \hat {f} , the Donoho-Stark uncertainty principle states that | {\mathrm{ supp}}(f)|| {\mathrm{ supp}}(\hat {f})|\geq |G| . The purpose of this paper is twofold. First, we present the shift bound for abelian codes with a streamlined proof. Second, we use the shifting technique to prove a generalization and a sharpening of the Donoho-Stark uncertainty principle. In particular, if f: G\rightarrow {\mathbf{F}} is a non-zero function from G to a field {\mathbf{F}} , and if f has a Fourier transform \hat {f} , the sharpened uncertainty principle states that | {\mathrm{ supp}}(f)|| {\mathrm{ supp}}(\hat {f})|\geq |G|+| {\mathrm{ supp}}(f)|-|H({\mathrm{ supp}}(f))| , where H({\mathrm{ supp}}(f)) is the stabilizer of {\mathrm{ supp}}(f) in G .
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2906301