Loading…
The Shift Bound for Abelian Codes and Generalizations of the Donoho-Stark Uncertainty Principle
Let G be a finite abelian group. If f: G\rightarrow {\mathbf{C}} is a nonzero function with Fourier transform \hat {f} , the Donoho-Stark uncertainty principle states that | {\mathrm{ supp}}(f)|| {\mathrm{ supp}}(\hat {f})|\geq |G| . The purpose of this paper is twofold. First, we present the...
Saved in:
Published in: | IEEE transactions on information theory 2019-08, Vol.65 (8), p.4673-4682 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G be a finite abelian group. If f: G\rightarrow {\mathbf{C}} is a nonzero function with Fourier transform \hat {f} , the Donoho-Stark uncertainty principle states that | {\mathrm{ supp}}(f)|| {\mathrm{ supp}}(\hat {f})|\geq |G| . The purpose of this paper is twofold. First, we present the shift bound for abelian codes with a streamlined proof. Second, we use the shifting technique to prove a generalization and a sharpening of the Donoho-Stark uncertainty principle. In particular, if f: G\rightarrow {\mathbf{F}} is a non-zero function from G to a field {\mathbf{F}} , and if f has a Fourier transform \hat {f} , the sharpened uncertainty principle states that | {\mathrm{ supp}}(f)|| {\mathrm{ supp}}(\hat {f})|\geq |G|+| {\mathrm{ supp}}(f)|-|H({\mathrm{ supp}}(f))| , where H({\mathrm{ supp}}(f)) is the stabilizer of {\mathrm{ supp}}(f) in G . |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2019.2906301 |