Loading…
Quantized Compressed Sensing by Rectified Linear Units
This work is concerned with the problem of recovering high-dimensional signals \mathrm {x}\in \mathbb {R}^{\text {n}} which belong to a convex set of low complexity from a small number of quantized measurements. We propose to estimate the signals via a convex program based on rectified linear unit...
Saved in:
Published in: | IEEE transactions on information theory 2021-06, Vol.67 (6), p.4125-4149 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work is concerned with the problem of recovering high-dimensional signals \mathrm {x}\in \mathbb {R}^{\text {n}} which belong to a convex set of low complexity from a small number of quantized measurements. We propose to estimate the signals via a convex program based on rectified linear units (ReLUs) for two different quantization schemes, namely one-bit and uniform multi-bit quantization. Assuming that the linear measurement process can be modelled by a sensing matrix with i.i.d. subgaussian rows, we obtain for both schemes near-optimal uniform reconstruction guarantees by adding well-designed noise to the linear measurements prior to the quantization step. In the one-bit case, we show that the program is robust against adversarial bit corruptions as well as additive noise on the linear measurements. Further, our analysis quantifies precisely how the rate-distortion relationship of the program changes depending on whether we seek reconstruction accuracies above or below the level of additive noise. The proofs rely on recent results by Dirksen and Mendelson on non-Gaussian hyperplane tessellations. Finally, we complement our theoretical analysis with numerical experiments which compare our method to other state-of-the-art methodologies. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2021.3070789 |