Loading…
Generic Decoding in the Sum-Rank Metric
We propose the first non-trivial generic decoding algorithm for codes in the sum-rank metric. The new method combines ideas of well-known generic decoders in the Hamming and rank metric. For the same code parameters and number of errors, the new generic decoder has a larger expected complexity than...
Saved in:
Published in: | IEEE transactions on information theory 2022-08, Vol.68 (8), p.5075-5097 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose the first non-trivial generic decoding algorithm for codes in the sum-rank metric. The new method combines ideas of well-known generic decoders in the Hamming and rank metric. For the same code parameters and number of errors, the new generic decoder has a larger expected complexity than the known generic decoders for the Hamming metric and smaller than the known rank-metric decoders. Furthermore, we give a formal hardness reduction, providing evidence that generic sum-rank decoding is computationally hard. As a by-product of the above, we solve some fundamental coding problems in the sum-rank metric: we give an algorithm to compute the exact size of a sphere of a given sum-rank radius, and also give an upper bound as a closed formula; and we study erasure decoding with respect to two different notions of support. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2022.3167629 |