Loading…
Approximate Distributed K-Means Clustering over a Peer-to-Peer Network
Data intensive peer-to-peer (P2P) networks are finding increasing number of applications. Data mining in such P2P environments is a natural extension. However, common monolithic data mining architectures do not fit well in such environments since they typically require centralizing the distributed d...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2009-10, Vol.21 (10), p.1372-1388 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Data intensive peer-to-peer (P2P) networks are finding increasing number of applications. Data mining in such P2P environments is a natural extension. However, common monolithic data mining architectures do not fit well in such environments since they typically require centralizing the distributed data which is usually not practical in a large P2P network. Distributed data mining algorithms that avoid large-scale synchronization or data centralization offer an alternate choice. This paper considers the distributed K-means clustering problem where the data and computing resources are distributed over a large P2P network. It offers two algorithms which produce an approximation of the result produced by the standard centralized K-means clustering algorithm. The first is designed to operate in a dynamic P2P network that can produce clusterings by ldquolocalrdquo synchronization only. The second algorithm uses uniformly sampled peers and provides analytical guarantees regarding the accuracy of clustering on a P2P network. Empirical results show that both the algorithms demonstrate good performance compared to their centralized counterparts at the modest communication cost. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2008.222 |