Loading…

A Group Incremental Approach to Feature Selection Applying Rough Set Technique

Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering 2014-02, Vol.26 (2), p.294-308
Main Authors: Jiye Liang, Feng Wang, Chuangyin Dang, Yuhua Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793
cites cdi_FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793
container_end_page 308
container_issue 2
container_start_page 294
container_title IEEE transactions on knowledge and data engineering
container_volume 26
creator Jiye Liang
Feng Wang
Chuangyin Dang
Yuhua Qian
description Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient.
doi_str_mv 10.1109/TKDE.2012.146
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2012_146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247431</ieee_id><sourcerecordid>10_1109_TKDE_2012_146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EEqUwMrH4B1L8bKe2x6q0paICCcIcOe5LE5QmwXGG_n0TFTHdK92jOxxCHoHNAJh5Tt5eVjPOgM9Azq_IBOJYRxwMXA-dSYikkOqW3HXdD2NMKw0T8r6gG9_0Ld3WzuMR62Arumhb31hX0NDQNdrQe6RfWKELZVOPa3Uq6wP9bPpDMQyBJuiKuvzt8Z7c5Lbq8OEvp-R7vUqWr9HuY7NdLnaR47EKkdyjsUKhzLK9U2BBKOmU5o4jM3utLDPazUWWoXEMleG5EVpwrg2PM6aMmJLo8ut803Ue87T15dH6UwosHWWko4x0lJEOMgb-6cKXiPjPzrlUUoA4AzEvWmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Group Incremental Approach to Feature Selection Applying Rough Set Technique</title><source>IEEE Xplore (Online service)</source><creator>Jiye Liang ; Feng Wang ; Chuangyin Dang ; Yuhua Qian</creator><creatorcontrib>Jiye Liang ; Feng Wang ; Chuangyin Dang ; Yuhua Qian</creatorcontrib><description>Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2012.146</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Dynamic data sets ; Entropy ; feature selection ; Heuristic algorithms ; incremental algorithm ; Information entropy ; Measurement uncertainty ; rough set theory ; Set theory ; Uncertainty</subject><ispartof>IEEE transactions on knowledge and data engineering, 2014-02, Vol.26 (2), p.294-308</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793</citedby><cites>FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Jiye Liang</creatorcontrib><creatorcontrib>Feng Wang</creatorcontrib><creatorcontrib>Chuangyin Dang</creatorcontrib><creatorcontrib>Yuhua Qian</creatorcontrib><title>A Group Incremental Approach to Feature Selection Applying Rough Set Technique</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient.</description><subject>Approximation algorithms</subject><subject>Dynamic data sets</subject><subject>Entropy</subject><subject>feature selection</subject><subject>Heuristic algorithms</subject><subject>incremental algorithm</subject><subject>Information entropy</subject><subject>Measurement uncertainty</subject><subject>rough set theory</subject><subject>Set theory</subject><subject>Uncertainty</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAURS0EEqUwMrH4B1L8bKe2x6q0paICCcIcOe5LE5QmwXGG_n0TFTHdK92jOxxCHoHNAJh5Tt5eVjPOgM9Azq_IBOJYRxwMXA-dSYikkOqW3HXdD2NMKw0T8r6gG9_0Ld3WzuMR62Arumhb31hX0NDQNdrQe6RfWKELZVOPa3Uq6wP9bPpDMQyBJuiKuvzt8Z7c5Lbq8OEvp-R7vUqWr9HuY7NdLnaR47EKkdyjsUKhzLK9U2BBKOmU5o4jM3utLDPazUWWoXEMleG5EVpwrg2PM6aMmJLo8ut803Ue87T15dH6UwosHWWko4x0lJEOMgb-6cKXiPjPzrlUUoA4AzEvWmU</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Jiye Liang</creator><creator>Feng Wang</creator><creator>Chuangyin Dang</creator><creator>Yuhua Qian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201402</creationdate><title>A Group Incremental Approach to Feature Selection Applying Rough Set Technique</title><author>Jiye Liang ; Feng Wang ; Chuangyin Dang ; Yuhua Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation algorithms</topic><topic>Dynamic data sets</topic><topic>Entropy</topic><topic>feature selection</topic><topic>Heuristic algorithms</topic><topic>incremental algorithm</topic><topic>Information entropy</topic><topic>Measurement uncertainty</topic><topic>rough set theory</topic><topic>Set theory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiye Liang</creatorcontrib><creatorcontrib>Feng Wang</creatorcontrib><creatorcontrib>Chuangyin Dang</creatorcontrib><creatorcontrib>Yuhua Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiye Liang</au><au>Feng Wang</au><au>Chuangyin Dang</au><au>Yuhua Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Group Incremental Approach to Feature Selection Applying Rough Set Technique</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2014-02</date><risdate>2014</risdate><volume>26</volume><issue>2</issue><spage>294</spage><epage>308</epage><pages>294-308</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2012.146</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2014-02, Vol.26 (2), p.294-308
issn 1041-4347
1558-2191
language eng
recordid cdi_crossref_primary_10_1109_TKDE_2012_146
source IEEE Xplore (Online service)
subjects Approximation algorithms
Dynamic data sets
Entropy
feature selection
Heuristic algorithms
incremental algorithm
Information entropy
Measurement uncertainty
rough set theory
Set theory
Uncertainty
title A Group Incremental Approach to Feature Selection Applying Rough Set Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Group%20Incremental%20Approach%20to%20Feature%20Selection%20Applying%20Rough%20Set%20Technique&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Jiye%20Liang&rft.date=2014-02&rft.volume=26&rft.issue=2&rft.spage=294&rft.epage=308&rft.pages=294-308&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2012.146&rft_dat=%3Ccrossref_ieee_%3E10_1109_TKDE_2012_146%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247431&rfr_iscdi=true