Loading…
A Group Incremental Approach to Feature Selection Applying Rough Set Technique
Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention,...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2014-02, Vol.26 (2), p.294-308 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793 |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793 |
container_end_page | 308 |
container_issue | 2 |
container_start_page | 294 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 26 |
creator | Jiye Liang Feng Wang Chuangyin Dang Yuhua Qian |
description | Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient. |
doi_str_mv | 10.1109/TKDE.2012.146 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TKDE_2012_146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247431</ieee_id><sourcerecordid>10_1109_TKDE_2012_146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EEqUwMrH4B1L8bKe2x6q0paICCcIcOe5LE5QmwXGG_n0TFTHdK92jOxxCHoHNAJh5Tt5eVjPOgM9Azq_IBOJYRxwMXA-dSYikkOqW3HXdD2NMKw0T8r6gG9_0Ld3WzuMR62Arumhb31hX0NDQNdrQe6RfWKELZVOPa3Uq6wP9bPpDMQyBJuiKuvzt8Z7c5Lbq8OEvp-R7vUqWr9HuY7NdLnaR47EKkdyjsUKhzLK9U2BBKOmU5o4jM3utLDPazUWWoXEMleG5EVpwrg2PM6aMmJLo8ut803Ue87T15dH6UwosHWWko4x0lJEOMgb-6cKXiPjPzrlUUoA4AzEvWmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Group Incremental Approach to Feature Selection Applying Rough Set Technique</title><source>IEEE Xplore (Online service)</source><creator>Jiye Liang ; Feng Wang ; Chuangyin Dang ; Yuhua Qian</creator><creatorcontrib>Jiye Liang ; Feng Wang ; Chuangyin Dang ; Yuhua Qian</creatorcontrib><description>Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2012.146</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Dynamic data sets ; Entropy ; feature selection ; Heuristic algorithms ; incremental algorithm ; Information entropy ; Measurement uncertainty ; rough set theory ; Set theory ; Uncertainty</subject><ispartof>IEEE transactions on knowledge and data engineering, 2014-02, Vol.26 (2), p.294-308</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793</citedby><cites>FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Jiye Liang</creatorcontrib><creatorcontrib>Feng Wang</creatorcontrib><creatorcontrib>Chuangyin Dang</creatorcontrib><creatorcontrib>Yuhua Qian</creatorcontrib><title>A Group Incremental Approach to Feature Selection Applying Rough Set Technique</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient.</description><subject>Approximation algorithms</subject><subject>Dynamic data sets</subject><subject>Entropy</subject><subject>feature selection</subject><subject>Heuristic algorithms</subject><subject>incremental algorithm</subject><subject>Information entropy</subject><subject>Measurement uncertainty</subject><subject>rough set theory</subject><subject>Set theory</subject><subject>Uncertainty</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAURS0EEqUwMrH4B1L8bKe2x6q0paICCcIcOe5LE5QmwXGG_n0TFTHdK92jOxxCHoHNAJh5Tt5eVjPOgM9Azq_IBOJYRxwMXA-dSYikkOqW3HXdD2NMKw0T8r6gG9_0Ld3WzuMR62Arumhb31hX0NDQNdrQe6RfWKELZVOPa3Uq6wP9bPpDMQyBJuiKuvzt8Z7c5Lbq8OEvp-R7vUqWr9HuY7NdLnaR47EKkdyjsUKhzLK9U2BBKOmU5o4jM3utLDPazUWWoXEMleG5EVpwrg2PM6aMmJLo8ut803Ue87T15dH6UwosHWWko4x0lJEOMgb-6cKXiPjPzrlUUoA4AzEvWmU</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Jiye Liang</creator><creator>Feng Wang</creator><creator>Chuangyin Dang</creator><creator>Yuhua Qian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201402</creationdate><title>A Group Incremental Approach to Feature Selection Applying Rough Set Technique</title><author>Jiye Liang ; Feng Wang ; Chuangyin Dang ; Yuhua Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation algorithms</topic><topic>Dynamic data sets</topic><topic>Entropy</topic><topic>feature selection</topic><topic>Heuristic algorithms</topic><topic>incremental algorithm</topic><topic>Information entropy</topic><topic>Measurement uncertainty</topic><topic>rough set theory</topic><topic>Set theory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiye Liang</creatorcontrib><creatorcontrib>Feng Wang</creatorcontrib><creatorcontrib>Chuangyin Dang</creatorcontrib><creatorcontrib>Yuhua Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiye Liang</au><au>Feng Wang</au><au>Chuangyin Dang</au><au>Yuhua Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Group Incremental Approach to Feature Selection Applying Rough Set Technique</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2014-02</date><risdate>2014</risdate><volume>26</volume><issue>2</issue><spage>294</spage><epage>308</epage><pages>294-308</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Many real data increase dynamically in size. This phenomenon occurs in several fields including economics, population studies, and medical research. As an effective and efficient mechanism to deal with such data, incremental technique has been proposed in the literature and attracted much attention, which stimulates the result in this paper. When a group of objects are added to a decision table, we first introduce incremental mechanisms for three representative information entropies and then develop a group incremental rough feature selection algorithm based on information entropy. When multiple objects are added to a decision table, the algorithm aims to find the new feature subset in a much shorter time. Experiments have been carried out on eight UCI data sets and the experimental results show that the algorithm is effective and efficient.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2012.146</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2014-02, Vol.26 (2), p.294-308 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TKDE_2012_146 |
source | IEEE Xplore (Online service) |
subjects | Approximation algorithms Dynamic data sets Entropy feature selection Heuristic algorithms incremental algorithm Information entropy Measurement uncertainty rough set theory Set theory Uncertainty |
title | A Group Incremental Approach to Feature Selection Applying Rough Set Technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Group%20Incremental%20Approach%20to%20Feature%20Selection%20Applying%20Rough%20Set%20Technique&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Jiye%20Liang&rft.date=2014-02&rft.volume=26&rft.issue=2&rft.spage=294&rft.epage=308&rft.pages=294-308&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2012.146&rft_dat=%3Ccrossref_ieee_%3E10_1109_TKDE_2012_146%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-4de9a37e4bbdc71a1374c782c2e09d87a098c63bbe9c0e792f9383228925b0793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247431&rfr_iscdi=true |