Loading…

Convolutional Neural Network-Based Media Noise Prediction and Equalization for TDMR Turbo-Detection With Write/Read TMR

This article considers a turbo-detection system that includes a convolutional neural network (CNN)-based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recordin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2023-03, Vol.59 (3), p.1-11
Main Authors: Sayyafan, Amirhossein, Aboutaleb, Ahmed, Belzer, Benjamin J., Sivakumar, Krishnamoorthy, Greaves, Simon, Chan, Kheong Sann, James, Ashish
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article considers a turbo-detection system that includes a convolutional neural network (CNN)-based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recording (TDMR) in the presence of track misregistration (TMR). The input readings are passed to a 2-D partial response (PR) equalizer, which is either linear or CNN-based. The equalized waveforms are inputs to a 2-D BCJR detector, which generates log-likelihood-ratio (LLR) outputs. The CNN MNP is provided with BCJR LLRs to estimate signal-dependent media noise samples and feed them back to the BCJR. A second pass through the BCJR produces LLRs, which are decoded by an LDPC decoder; achieved areal density (AD) is computed from the LDPC code rate. Spatially varying read- and write-TMR models are developed. We investigate the performance of the proposed system on simulated TDMR readback waveforms generated by grain-switching probabilistic (GSP) simulations. We have two types of GSP datasets. Dataset #1 includes two 10 nm bit length (BL) datasets with 18 and 24 nm track pitch (TP). Dataset #2 has 11 nm BL and 15 nm TP. The comparison baseline is a 1-D BCJR detector with pattern-dependent noise prediction (PDNP) and soft intertrack interference (ITI) subtraction, referred to as 1-D PDNP with LLR exchange. The write-TMR and read-TMR are modeled as cross-track-independent downtrack-correlated random processes. In the presence of joint write- and read-TMR, the proposed turbo-detection system achieves 8.34% and 0.70% AD gain over 1-D PDNP with LLR exchange for TP 18 and 24 nm dataset #1, respectively, and is more robust to TMR compared to the baseline.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2022.3216640