Loading…

Learn2Dance: Learning Statistical Music-to-Dance Mappings for Choreography Synthesis

We propose a novel framework for learning many-to-many statistical mappings from musical measures to dance figures towards generating plausible music-driven dance choreographies. We obtain music-to-dance mappings through use of four statistical models: 1) musical measure models, representing a many-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia 2012-06, Vol.14 (3), p.747-759
Main Authors: Ofli, F., Erzin, E., Yemez, Y., Tekalp, A. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a novel framework for learning many-to-many statistical mappings from musical measures to dance figures towards generating plausible music-driven dance choreographies. We obtain music-to-dance mappings through use of four statistical models: 1) musical measure models, representing a many-to-one relation, each of which associates different melody patterns to a given dance figure via a hidden Markov model (HMM); 2) exchangeable figures model, which captures the diversity in a dance performance through a one-to-many relation, extracted by unsupervised clustering of musical measure segments based on melodic similarity; 3) figure transition model, which captures the intrinsic dependencies of dance figure sequences via an n-gram model; 4) dance figure models, capturing the variations in the way particular dance figures are performed, by modeling the motion trajectory of each dance figure via an HMM. Based on the first three of these statistical mappings, we define a discrete HMM and synthesize alternative dance figure sequences by employing a modified Viterbi algorithm. The motion parameters of the dance figures in the synthesized choreography are then computed using the dance figure models. Finally, the generated motion parameters are animated synchronously with the musical audio using a 3-D character model. Objective and subjective evaluation results demonstrate that the proposed framework is able to produce compelling music-driven choreographies.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2011.2181492