Loading…
Iterative Adversarial Attack on Image-Guided Story Ending Generation
Multimodal learning involves developing models that can integrate information from various sources like images and texts. In this field, multimodal text generation is a crucial aspect that involves processing data from multiple modalities and outputting text. The image-guided story ending generation...
Saved in:
Published in: | IEEE transactions on multimedia 2024, Vol.26, p.6117-6130 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multimodal learning involves developing models that can integrate information from various sources like images and texts. In this field, multimodal text generation is a crucial aspect that involves processing data from multiple modalities and outputting text. The image-guided story ending generation (IgSEG) is a particularly significant task, targeting on an understanding of complex relationships between text and image data with a complete story text ending. Unfortunately, deep neural networks, which are the backbone of recent IgSEG models, are vulnerable to adversarial samples. Current adversarial attack methods mainly focus on single-modality data and do not analyze adversarial attacks for multimodal text generation tasks that use cross-modal information. To this end, we propose an iterative adversarial attack method (Iterative-attack) that fuses image and text modality attacks, allowing for an attack search for adversarial text and image in a more effective iterative way. Experimental results demonstrate that the proposed method outperforms existing single-modal and non-iterative multimodal attack methods, indicating the potential for improving the adversarial robustness of multimodal text generation models, such as multimodal machine translation, multimodal question answering, etc. |
---|---|
ISSN: | 1520-9210 1941-0077 |
DOI: | 10.1109/TMM.2023.3345167 |