Loading…
Piecewise Calculation Scheme for the Unconditionally Stable Chebyshev Finite-Difference Time-Domain Method
The unconditionally stable (US) Chebyshev (CS) finite-difference time-domain (FDTD) method is extended for solving the problems of long-time simulation or harmonic resonance using a piecewise calculation scheme. First, the CS differential matrix is derived from the inversion of integral matrix with...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2025-01, p.1-9 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unconditionally stable (US) Chebyshev (CS) finite-difference time-domain (FDTD) method is extended for solving the problems of long-time simulation or harmonic resonance using a piecewise calculation scheme. First, the CS differential matrix is derived from the inversion of integral matrix with the differential characteristic of the CS polynomials. Then, the 2-D CS FDTD formula with initial values is derived based on the CS differential matrix, highlighting the merits of a closed interval for the CS basis functions and the 0th-order CS polynomial. In addition, the time-frequency support of CS functions for order selection is discussed. Finally, based on the above derivation, a piecewise calculation scheme is proposed to simulate an entire time, where the electromagnetic field is reconstructed piecewise with the Clenshaw law. Numerical examples for the 2-D {\rm TE}_z case show that the proposed method agrees well with the conventional FDTD method with the relative difference lower than -50 dB. This represents a higher accuracy than the associated hermite (AH) FDTD method and reduces the memory compared with the original CS FDTD method. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2025.3532330 |