Loading…
Global exponential stability of competitive neural networks with different time scales
The dynamics of cortical cognitive maps developed by self-organization must include the aspects of long and short-term memory. The behavior of such a neural network is characterized by an equation of neural activity as a fast phenomenon and an equation of synaptic modification as a slow part of the...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2003-05, Vol.14 (3), p.716-719 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dynamics of cortical cognitive maps developed by self-organization must include the aspects of long and short-term memory. The behavior of such a neural network is characterized by an equation of neural activity as a fast phenomenon and an equation of synaptic modification as a slow part of the neural system. We present a new method of analyzing the dynamics of a biological relevant system with different time scales based on the theory of flow invariance. We are able to show the conditions under which the solutions of such a system are bounded being less restrictive than with the K-monotone theory, singular perturbation theory, or those based on supervised synaptic learning. We prove the existence and the uniqueness of the equilibrium. A strict Lyapunov function for the flow of a competitive neural system with different time scales is given and based on it we are able to prove the global exponential stability of the equilibrium point. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2003.810594 |