Loading…
The neurochip BCI: towards a neural prosthesis for upper limb function
The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the bas...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2006-06, Vol.14 (2), p.187-190 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3 |
container_end_page | 190 |
container_issue | 2 |
container_start_page | 187 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 14 |
creator | Jackson, A. Moritz, C.T. Mavoori, J. Lucas, T.H. Fetz, E.E. |
description | The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the basis for a simple, direct neural prosthetic. In tests with normal, unrestrained monkeys, the Neurochip continuously recorded activity of single neurons in primary motor cortex for several weeks at a time. Cortical activity was correlated with simultaneously-recorded electromyogram (EMG) activity from arm muscles during free behavior. In separate experiments with anesthetized monkeys, we found that microstimulation of the cervical spinal cord evoked movements of the arm and hand, often involving multiple muscles synergies. These observations suggest that spinal microstimulation controlled by cortical neurons could help compensate for damaged corticospinal projections. |
doi_str_mv | 10.1109/TNSRE.2006.875547 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSRE_2006_875547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1642765</ieee_id><sourcerecordid>28103269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3</originalsourceid><addsrcrecordid>eNqFkV1LwzAUhoMozq8fIIIEL_SqM99pvNOx6UAUdF6HtJ6yjq6tSYv4783cQPFCrxI4z3lzTh6EjikZUkrM5ezh-Wk8ZISoYaqlFHoL7VEp04QwSrZXdy4SwRkZoP0QFoRQraTeRQOqtGHMkD00mc0B19D7Jp-XLb4ZTa9w17w7_xqw-yq4Cre-Cd0cQhlw0Xjcty14XJXLDBd9nXdlUx-incJVAY425wF6mYxno7vk_vF2Orq-T3KpVJcIoYBlCgrDOSEgOKeMSgdGMFlABoykThua5xJYIRRLCWUFE8a5LFdcAD9AF-vcONJbD6GzyzLkUFWuhqYPNjWcKR7Xj-T5n6RKpdKCi39BllISQ00Ez36Bi6b3dVzXGqoF01SuILqG8vhnwUNhW18unf-wlNiVNPslza6k2bW02HO6Ce6zJbx-d2wsReBkDZQA8KMc31SSfwI8SJjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917427159</pqid></control><display><type>article</type><title>The neurochip BCI: towards a neural prosthesis for upper limb function</title><source>Alma/SFX Local Collection</source><creator>Jackson, A. ; Moritz, C.T. ; Mavoori, J. ; Lucas, T.H. ; Fetz, E.E.</creator><creatorcontrib>Jackson, A. ; Moritz, C.T. ; Mavoori, J. ; Lucas, T.H. ; Fetz, E.E.</creatorcontrib><description>The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the basis for a simple, direct neural prosthetic. In tests with normal, unrestrained monkeys, the Neurochip continuously recorded activity of single neurons in primary motor cortex for several weeks at a time. Cortical activity was correlated with simultaneously-recorded electromyogram (EMG) activity from arm muscles during free behavior. In separate experiments with anesthetized monkeys, we found that microstimulation of the cervical spinal cord evoked movements of the arm and hand, often involving multiple muscles synergies. These observations suggest that spinal microstimulation controlled by cortical neurons could help compensate for damaged corticospinal projections.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2006.875547</identifier><identifier>PMID: 16792290</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Animals ; Brain ; Brain - physiopathology ; Brain-computer interface (BCI) ; Computer interfaces ; Electric Stimulation Therapy - instrumentation ; Electric Stimulation Therapy - methods ; Electrodes ; Electromyography ; Equipment Design ; Equipment Failure Analysis ; Evoked Potentials ; Haplorhini ; Humans ; motor cortex ; Motor Cortex - physiopathology ; Movement Disorders - physiopathology ; Movement Disorders - rehabilitation ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiopathology ; Muscles ; Nervous system ; neural prosthetics ; Neurons ; Prosthetics ; Pyramidal Tracts - physiopathology ; Spinal cord ; spinal cord injury ; Testing ; Therapy, Computer-Assisted - instrumentation ; Therapy, Computer-Assisted - methods ; Upper Extremity - innervation ; Upper Extremity - physiopathology ; User-Computer Interface</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2006-06, Vol.14 (2), p.187-190</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3</citedby><cites>FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16792290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, A.</creatorcontrib><creatorcontrib>Moritz, C.T.</creatorcontrib><creatorcontrib>Mavoori, J.</creatorcontrib><creatorcontrib>Lucas, T.H.</creatorcontrib><creatorcontrib>Fetz, E.E.</creatorcontrib><title>The neurochip BCI: towards a neural prosthesis for upper limb function</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the basis for a simple, direct neural prosthetic. In tests with normal, unrestrained monkeys, the Neurochip continuously recorded activity of single neurons in primary motor cortex for several weeks at a time. Cortical activity was correlated with simultaneously-recorded electromyogram (EMG) activity from arm muscles during free behavior. In separate experiments with anesthetized monkeys, we found that microstimulation of the cervical spinal cord evoked movements of the arm and hand, often involving multiple muscles synergies. These observations suggest that spinal microstimulation controlled by cortical neurons could help compensate for damaged corticospinal projections.</description><subject>Animals</subject><subject>Brain</subject><subject>Brain - physiopathology</subject><subject>Brain-computer interface (BCI)</subject><subject>Computer interfaces</subject><subject>Electric Stimulation Therapy - instrumentation</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Evoked Potentials</subject><subject>Haplorhini</subject><subject>Humans</subject><subject>motor cortex</subject><subject>Motor Cortex - physiopathology</subject><subject>Movement Disorders - physiopathology</subject><subject>Movement Disorders - rehabilitation</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>neural prosthetics</subject><subject>Neurons</subject><subject>Prosthetics</subject><subject>Pyramidal Tracts - physiopathology</subject><subject>Spinal cord</subject><subject>spinal cord injury</subject><subject>Testing</subject><subject>Therapy, Computer-Assisted - instrumentation</subject><subject>Therapy, Computer-Assisted - methods</subject><subject>Upper Extremity - innervation</subject><subject>Upper Extremity - physiopathology</subject><subject>User-Computer Interface</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkV1LwzAUhoMozq8fIIIEL_SqM99pvNOx6UAUdF6HtJ6yjq6tSYv4783cQPFCrxI4z3lzTh6EjikZUkrM5ezh-Wk8ZISoYaqlFHoL7VEp04QwSrZXdy4SwRkZoP0QFoRQraTeRQOqtGHMkD00mc0B19D7Jp-XLb4ZTa9w17w7_xqw-yq4Cre-Cd0cQhlw0Xjcty14XJXLDBd9nXdlUx-incJVAY425wF6mYxno7vk_vF2Orq-T3KpVJcIoYBlCgrDOSEgOKeMSgdGMFlABoykThua5xJYIRRLCWUFE8a5LFdcAD9AF-vcONJbD6GzyzLkUFWuhqYPNjWcKR7Xj-T5n6RKpdKCi39BllISQ00Ez36Bi6b3dVzXGqoF01SuILqG8vhnwUNhW18unf-wlNiVNPslza6k2bW02HO6Ce6zJbx-d2wsReBkDZQA8KMc31SSfwI8SJjo</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Jackson, A.</creator><creator>Moritz, C.T.</creator><creator>Mavoori, J.</creator><creator>Lucas, T.H.</creator><creator>Fetz, E.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060601</creationdate><title>The neurochip BCI: towards a neural prosthesis for upper limb function</title><author>Jackson, A. ; Moritz, C.T. ; Mavoori, J. ; Lucas, T.H. ; Fetz, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Brain - physiopathology</topic><topic>Brain-computer interface (BCI)</topic><topic>Computer interfaces</topic><topic>Electric Stimulation Therapy - instrumentation</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Evoked Potentials</topic><topic>Haplorhini</topic><topic>Humans</topic><topic>motor cortex</topic><topic>Motor Cortex - physiopathology</topic><topic>Movement Disorders - physiopathology</topic><topic>Movement Disorders - rehabilitation</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>neural prosthetics</topic><topic>Neurons</topic><topic>Prosthetics</topic><topic>Pyramidal Tracts - physiopathology</topic><topic>Spinal cord</topic><topic>spinal cord injury</topic><topic>Testing</topic><topic>Therapy, Computer-Assisted - instrumentation</topic><topic>Therapy, Computer-Assisted - methods</topic><topic>Upper Extremity - innervation</topic><topic>Upper Extremity - physiopathology</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, A.</creatorcontrib><creatorcontrib>Moritz, C.T.</creatorcontrib><creatorcontrib>Mavoori, J.</creatorcontrib><creatorcontrib>Lucas, T.H.</creatorcontrib><creatorcontrib>Fetz, E.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, A.</au><au>Moritz, C.T.</au><au>Mavoori, J.</au><au>Lucas, T.H.</au><au>Fetz, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The neurochip BCI: towards a neural prosthesis for upper limb function</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>14</volume><issue>2</issue><spage>187</spage><epage>190</epage><pages>187-190</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the basis for a simple, direct neural prosthetic. In tests with normal, unrestrained monkeys, the Neurochip continuously recorded activity of single neurons in primary motor cortex for several weeks at a time. Cortical activity was correlated with simultaneously-recorded electromyogram (EMG) activity from arm muscles during free behavior. In separate experiments with anesthetized monkeys, we found that microstimulation of the cervical spinal cord evoked movements of the arm and hand, often involving multiple muscles synergies. These observations suggest that spinal microstimulation controlled by cortical neurons could help compensate for damaged corticospinal projections.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>16792290</pmid><doi>10.1109/TNSRE.2006.875547</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2006-06, Vol.14 (2), p.187-190 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TNSRE_2006_875547 |
source | Alma/SFX Local Collection |
subjects | Animals Brain Brain - physiopathology Brain-computer interface (BCI) Computer interfaces Electric Stimulation Therapy - instrumentation Electric Stimulation Therapy - methods Electrodes Electromyography Equipment Design Equipment Failure Analysis Evoked Potentials Haplorhini Humans motor cortex Motor Cortex - physiopathology Movement Disorders - physiopathology Movement Disorders - rehabilitation Muscle, Skeletal - innervation Muscle, Skeletal - physiopathology Muscles Nervous system neural prosthetics Neurons Prosthetics Pyramidal Tracts - physiopathology Spinal cord spinal cord injury Testing Therapy, Computer-Assisted - instrumentation Therapy, Computer-Assisted - methods Upper Extremity - innervation Upper Extremity - physiopathology User-Computer Interface |
title | The neurochip BCI: towards a neural prosthesis for upper limb function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20neurochip%20BCI:%20towards%20a%20neural%20prosthesis%20for%20upper%20limb%20function&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Jackson,%20A.&rft.date=2006-06-01&rft.volume=14&rft.issue=2&rft.spage=187&rft.epage=190&rft.pages=187-190&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2006.875547&rft_dat=%3Cproquest_cross%3E28103269%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=917427159&rft_id=info:pmid/16792290&rft_ieee_id=1642765&rfr_iscdi=true |