Loading…

The neurochip BCI: towards a neural prosthesis for upper limb function

The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the bas...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2006-06, Vol.14 (2), p.187-190
Main Authors: Jackson, A., Moritz, C.T., Mavoori, J., Lucas, T.H., Fetz, E.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3
cites cdi_FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3
container_end_page 190
container_issue 2
container_start_page 187
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 14
creator Jackson, A.
Moritz, C.T.
Mavoori, J.
Lucas, T.H.
Fetz, E.E.
description The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the basis for a simple, direct neural prosthetic. In tests with normal, unrestrained monkeys, the Neurochip continuously recorded activity of single neurons in primary motor cortex for several weeks at a time. Cortical activity was correlated with simultaneously-recorded electromyogram (EMG) activity from arm muscles during free behavior. In separate experiments with anesthetized monkeys, we found that microstimulation of the cervical spinal cord evoked movements of the arm and hand, often involving multiple muscles synergies. These observations suggest that spinal microstimulation controlled by cortical neurons could help compensate for damaged corticospinal projections.
doi_str_mv 10.1109/TNSRE.2006.875547
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TNSRE_2006_875547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1642765</ieee_id><sourcerecordid>28103269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3</originalsourceid><addsrcrecordid>eNqFkV1LwzAUhoMozq8fIIIEL_SqM99pvNOx6UAUdF6HtJ6yjq6tSYv4783cQPFCrxI4z3lzTh6EjikZUkrM5ezh-Wk8ZISoYaqlFHoL7VEp04QwSrZXdy4SwRkZoP0QFoRQraTeRQOqtGHMkD00mc0B19D7Jp-XLb4ZTa9w17w7_xqw-yq4Cre-Cd0cQhlw0Xjcty14XJXLDBd9nXdlUx-incJVAY425wF6mYxno7vk_vF2Orq-T3KpVJcIoYBlCgrDOSEgOKeMSgdGMFlABoykThua5xJYIRRLCWUFE8a5LFdcAD9AF-vcONJbD6GzyzLkUFWuhqYPNjWcKR7Xj-T5n6RKpdKCi39BllISQ00Ez36Bi6b3dVzXGqoF01SuILqG8vhnwUNhW18unf-wlNiVNPslza6k2bW02HO6Ce6zJbx-d2wsReBkDZQA8KMc31SSfwI8SJjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917427159</pqid></control><display><type>article</type><title>The neurochip BCI: towards a neural prosthesis for upper limb function</title><source>Alma/SFX Local Collection</source><creator>Jackson, A. ; Moritz, C.T. ; Mavoori, J. ; Lucas, T.H. ; Fetz, E.E.</creator><creatorcontrib>Jackson, A. ; Moritz, C.T. ; Mavoori, J. ; Lucas, T.H. ; Fetz, E.E.</creatorcontrib><description>The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the basis for a simple, direct neural prosthetic. In tests with normal, unrestrained monkeys, the Neurochip continuously recorded activity of single neurons in primary motor cortex for several weeks at a time. Cortical activity was correlated with simultaneously-recorded electromyogram (EMG) activity from arm muscles during free behavior. In separate experiments with anesthetized monkeys, we found that microstimulation of the cervical spinal cord evoked movements of the arm and hand, often involving multiple muscles synergies. These observations suggest that spinal microstimulation controlled by cortical neurons could help compensate for damaged corticospinal projections.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2006.875547</identifier><identifier>PMID: 16792290</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Animals ; Brain ; Brain - physiopathology ; Brain-computer interface (BCI) ; Computer interfaces ; Electric Stimulation Therapy - instrumentation ; Electric Stimulation Therapy - methods ; Electrodes ; Electromyography ; Equipment Design ; Equipment Failure Analysis ; Evoked Potentials ; Haplorhini ; Humans ; motor cortex ; Motor Cortex - physiopathology ; Movement Disorders - physiopathology ; Movement Disorders - rehabilitation ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiopathology ; Muscles ; Nervous system ; neural prosthetics ; Neurons ; Prosthetics ; Pyramidal Tracts - physiopathology ; Spinal cord ; spinal cord injury ; Testing ; Therapy, Computer-Assisted - instrumentation ; Therapy, Computer-Assisted - methods ; Upper Extremity - innervation ; Upper Extremity - physiopathology ; User-Computer Interface</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2006-06, Vol.14 (2), p.187-190</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3</citedby><cites>FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16792290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, A.</creatorcontrib><creatorcontrib>Moritz, C.T.</creatorcontrib><creatorcontrib>Mavoori, J.</creatorcontrib><creatorcontrib>Lucas, T.H.</creatorcontrib><creatorcontrib>Fetz, E.E.</creatorcontrib><title>The neurochip BCI: towards a neural prosthesis for upper limb function</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the basis for a simple, direct neural prosthetic. In tests with normal, unrestrained monkeys, the Neurochip continuously recorded activity of single neurons in primary motor cortex for several weeks at a time. Cortical activity was correlated with simultaneously-recorded electromyogram (EMG) activity from arm muscles during free behavior. In separate experiments with anesthetized monkeys, we found that microstimulation of the cervical spinal cord evoked movements of the arm and hand, often involving multiple muscles synergies. These observations suggest that spinal microstimulation controlled by cortical neurons could help compensate for damaged corticospinal projections.</description><subject>Animals</subject><subject>Brain</subject><subject>Brain - physiopathology</subject><subject>Brain-computer interface (BCI)</subject><subject>Computer interfaces</subject><subject>Electric Stimulation Therapy - instrumentation</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Evoked Potentials</subject><subject>Haplorhini</subject><subject>Humans</subject><subject>motor cortex</subject><subject>Motor Cortex - physiopathology</subject><subject>Movement Disorders - physiopathology</subject><subject>Movement Disorders - rehabilitation</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>neural prosthetics</subject><subject>Neurons</subject><subject>Prosthetics</subject><subject>Pyramidal Tracts - physiopathology</subject><subject>Spinal cord</subject><subject>spinal cord injury</subject><subject>Testing</subject><subject>Therapy, Computer-Assisted - instrumentation</subject><subject>Therapy, Computer-Assisted - methods</subject><subject>Upper Extremity - innervation</subject><subject>Upper Extremity - physiopathology</subject><subject>User-Computer Interface</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkV1LwzAUhoMozq8fIIIEL_SqM99pvNOx6UAUdF6HtJ6yjq6tSYv4783cQPFCrxI4z3lzTh6EjikZUkrM5ezh-Wk8ZISoYaqlFHoL7VEp04QwSrZXdy4SwRkZoP0QFoRQraTeRQOqtGHMkD00mc0B19D7Jp-XLb4ZTa9w17w7_xqw-yq4Cre-Cd0cQhlw0Xjcty14XJXLDBd9nXdlUx-incJVAY425wF6mYxno7vk_vF2Orq-T3KpVJcIoYBlCgrDOSEgOKeMSgdGMFlABoykThua5xJYIRRLCWUFE8a5LFdcAD9AF-vcONJbD6GzyzLkUFWuhqYPNjWcKR7Xj-T5n6RKpdKCi39BllISQ00Ez36Bi6b3dVzXGqoF01SuILqG8vhnwUNhW18unf-wlNiVNPslza6k2bW02HO6Ce6zJbx-d2wsReBkDZQA8KMc31SSfwI8SJjo</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Jackson, A.</creator><creator>Moritz, C.T.</creator><creator>Mavoori, J.</creator><creator>Lucas, T.H.</creator><creator>Fetz, E.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20060601</creationdate><title>The neurochip BCI: towards a neural prosthesis for upper limb function</title><author>Jackson, A. ; Moritz, C.T. ; Mavoori, J. ; Lucas, T.H. ; Fetz, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Brain - physiopathology</topic><topic>Brain-computer interface (BCI)</topic><topic>Computer interfaces</topic><topic>Electric Stimulation Therapy - instrumentation</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Evoked Potentials</topic><topic>Haplorhini</topic><topic>Humans</topic><topic>motor cortex</topic><topic>Motor Cortex - physiopathology</topic><topic>Movement Disorders - physiopathology</topic><topic>Movement Disorders - rehabilitation</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>neural prosthetics</topic><topic>Neurons</topic><topic>Prosthetics</topic><topic>Pyramidal Tracts - physiopathology</topic><topic>Spinal cord</topic><topic>spinal cord injury</topic><topic>Testing</topic><topic>Therapy, Computer-Assisted - instrumentation</topic><topic>Therapy, Computer-Assisted - methods</topic><topic>Upper Extremity - innervation</topic><topic>Upper Extremity - physiopathology</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, A.</creatorcontrib><creatorcontrib>Moritz, C.T.</creatorcontrib><creatorcontrib>Mavoori, J.</creatorcontrib><creatorcontrib>Lucas, T.H.</creatorcontrib><creatorcontrib>Fetz, E.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, A.</au><au>Moritz, C.T.</au><au>Mavoori, J.</au><au>Lucas, T.H.</au><au>Fetz, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The neurochip BCI: towards a neural prosthesis for upper limb function</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>14</volume><issue>2</issue><spage>187</spage><epage>190</epage><pages>187-190</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>The Neurochip BCI is an autonomously operating interface between an implanted computer chip and recording and stimulating electrodes in the nervous system. By converting neural activity recorded in one brain area into electrical stimuli delivered to another site, the Neurochip BCI could form the basis for a simple, direct neural prosthetic. In tests with normal, unrestrained monkeys, the Neurochip continuously recorded activity of single neurons in primary motor cortex for several weeks at a time. Cortical activity was correlated with simultaneously-recorded electromyogram (EMG) activity from arm muscles during free behavior. In separate experiments with anesthetized monkeys, we found that microstimulation of the cervical spinal cord evoked movements of the arm and hand, often involving multiple muscles synergies. These observations suggest that spinal microstimulation controlled by cortical neurons could help compensate for damaged corticospinal projections.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>16792290</pmid><doi>10.1109/TNSRE.2006.875547</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2006-06, Vol.14 (2), p.187-190
issn 1534-4320
1558-0210
language eng
recordid cdi_crossref_primary_10_1109_TNSRE_2006_875547
source Alma/SFX Local Collection
subjects Animals
Brain
Brain - physiopathology
Brain-computer interface (BCI)
Computer interfaces
Electric Stimulation Therapy - instrumentation
Electric Stimulation Therapy - methods
Electrodes
Electromyography
Equipment Design
Equipment Failure Analysis
Evoked Potentials
Haplorhini
Humans
motor cortex
Motor Cortex - physiopathology
Movement Disorders - physiopathology
Movement Disorders - rehabilitation
Muscle, Skeletal - innervation
Muscle, Skeletal - physiopathology
Muscles
Nervous system
neural prosthetics
Neurons
Prosthetics
Pyramidal Tracts - physiopathology
Spinal cord
spinal cord injury
Testing
Therapy, Computer-Assisted - instrumentation
Therapy, Computer-Assisted - methods
Upper Extremity - innervation
Upper Extremity - physiopathology
User-Computer Interface
title The neurochip BCI: towards a neural prosthesis for upper limb function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20neurochip%20BCI:%20towards%20a%20neural%20prosthesis%20for%20upper%20limb%20function&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Jackson,%20A.&rft.date=2006-06-01&rft.volume=14&rft.issue=2&rft.spage=187&rft.epage=190&rft.pages=187-190&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2006.875547&rft_dat=%3Cproquest_cross%3E28103269%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-446e2b6ef93300e4331215ae9425febe208a791cc5e2f4628012f249aabc634e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=917427159&rft_id=info:pmid/16792290&rft_ieee_id=1642765&rfr_iscdi=true