Loading…

Commanding a Brain-Controlled Wheelchair Using Steady-State Somatosensory Evoked Potentials

In this work, we propose a novel brain-controlled wheelchair, one of the major applications of brain-machine interfaces (BMIs), that allows an individual with mobility impairments to perform daily living activities independently. Specifically, we propose to use a steady-state somatosensory evoked po...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2018-03, Vol.26 (3), p.654-665
Main Authors: Kim, Keun-Tae, Suk, Heung-Il, Lee, Seong-Whan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we propose a novel brain-controlled wheelchair, one of the major applications of brain-machine interfaces (BMIs), that allows an individual with mobility impairments to perform daily living activities independently. Specifically, we propose to use a steady-state somatosensory evoked potential (SSSEP) paradigm, which elicits brain responses to tactile stimulation of specific frequencies, for a user's intention to control a wheelchair. In our system, a user had three possible commands by concentrating on one of three vibration stimuli, which were attached to the left-hand, right-hand, and right-foot, to selectively control the wheelchair. The three stimuli were associated with three wheelchair commands: turn-left, turn-right, and move-forward. From a machine learning perspective, we also devise a novel feature representation by combining spatial and spectral characteristics of brain signals. In order to validate the effectiveness of the proposed SSSEP-based system, we considered two different tasks: 1) a simple obstacle-avoidance task within a limited time and; 2) a driving task along the predefined trajectory of about 40 m length, where there were a narrow pathway, a door, and obstacles. In both experiments, we recruited 12 subjects and compared the average time of motor imagery (MI) and SSSEP-based controls to complete the task. With the SSSEP-based control, all subjects successfully completed the task without making any collision while four subjects failed it with MI-based control. It is also noteworthy that in terms of the average time to complete the task, the SSSEP-based control outperformed the MI-based control. In the other more challenging task, all subjects successfully reached the target location.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2016.2597854