Loading…

FairGV: Fair and Fast GPU Virtualization

Increasingly high performance computing (HPC) application developers are opting to use cloud resources due to higher availability. Virtualized GPUs would be an obvious and attractive option for HPC application developers using cloud hosting services. Unfortunately, existing GPU virtualization softwa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on parallel and distributed systems 2017-12, Vol.28 (12), p.3472-3485
Main Authors: Cheol-Ho Hong, Spence, Ivor, Nikolopoulos, Dimitrios S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increasingly high performance computing (HPC) application developers are opting to use cloud resources due to higher availability. Virtualized GPUs would be an obvious and attractive option for HPC application developers using cloud hosting services. Unfortunately, existing GPU virtualization software is not ready to address fairness, utilization, and performance limitations associated with consolidating mixed HPC workloads. This paper presents FairGV, a radically redesigned GPU virtualization system that achieves system-wide weighted fair sharing and strong performance isolation in mixed workloads that use GPUs with variable degrees of intensity. To achieve its objectives, FairGV introduces a trap-less GPU processing architecture, a new fair queuing method integrated with work-conserving and GPU-centric coscheduling polices, and a collaborative scheduling method for non-preemptive GPUs. Our prototype implementation achieves near ideal fairness (≥ 0.97 Min-Max Ratio) with little performance degradation (≤ 1.02 aggregated overhead) in a range of mixed HPC workloads that leverage GPUs.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2017.2717908