Loading…

A Family of Hybrid IPT Topologies With Near Load-Independent Output and High Tolerance to Pad Misalignment

Inductive power transfer (IPT) systems have many unique benefits compared to conventional plugged-in systems. The coupling pads in IPT systems are inevitably misaligned in many practical applications, thus leading to variations of the transferred power and efficiency that necessitate the use of comp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2020-07, Vol.35 (7), p.6867-6877
Main Authors: Qu, Xiaohui, Yao, Yunchang, Wang, Dule, Wong, Siu-Chung, Tse, Chi K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inductive power transfer (IPT) systems have many unique benefits compared to conventional plugged-in systems. The coupling pads in IPT systems are inevitably misaligned in many practical applications, thus leading to variations of the transferred power and efficiency that necessitate the use of complicated control for output regulation. A common solution is to use two IPT converters with opposite trends of output to pad misalignment, so that the total output voltage or current could be kept near constant for large coupling variations. However, methods for deriving effective configurations for such hybrid IPT converters and their achievable tolerance to the misalignment are still missing. This article constructs a family of hybrid IPT topologies, including input-parallel-output-parallel, input-parallel-output-series, input-series-output-parallel (ISOP), and input-series-output-series for delivering a constant current (CC) or a constant voltage (CV). Design principles and characteristics for all the hybrid systems with near load-independent output and high tolerance to pad misalignment are derived and discussed in detail. Based on this family of configurations, this article also combines some existing IPT topologies and derives multiple hybrid converters for CC or CV output by using a simple duty cycle control. Finally, a 3.5-kW hybrid IPT prototype converter based on the ISOP structure is built to verify the theoretical analysis.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2019.2955299