Loading…
A Passive 2-DOF Walker: Hunting for Gaits Using Virtual Holonomic Constraints
A planar compass-like biped on a shallow slope is one of the simplest models of a passive walker. It is a 2-degree-of-freedom (DOF) impulsive mechanical system that is known to possess periodic solutions reminiscent of human walking. Finding such solutions is a challenging computational task that ha...
Saved in:
Published in: | IEEE transactions on robotics 2009-10, Vol.25 (5), p.1202-1208 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A planar compass-like biped on a shallow slope is one of the simplest models of a passive walker. It is a 2-degree-of-freedom (DOF) impulsive mechanical system that is known to possess periodic solutions reminiscent of human walking. Finding such solutions is a challenging computational task that has attracted many researchers who are motivated by various aspects of passive and active dynamic walking. We propose a new approach to find stable as well as unstable hybrid limit cycles without integrating the full set of differential equations and, at the same time, without approximating the dynamics. The procedure exploits a time-independent representation of a possible periodic solution via a virtual holonomic constraint. The description of the limit cycle obtained in this way is useful for the analysis and characterization of passive gaits as well as for design of regulators to achieve gaits with the smallest required control efforts. Some insights into the notion of hybrid zero dynamics, which are related to such a description, are presented as well. |
---|---|
ISSN: | 1552-3098 1941-0468 |
DOI: | 10.1109/TRO.2009.2028757 |