Loading…
Asymmetric Self-Play-Enabled Intelligent Heterogeneous Multirobot Catching System Using Deep Multiagent Reinforcement Learning
Aiming to develop a more robust and intelligent heterogeneous system for adversarial catching in security and rescue tasks, in this article, we discuss the specialities of applying asymmetric self-play and curriculum learning techniques to deal with the increasing heterogeneity and number of differe...
Saved in:
Published in: | IEEE transactions on robotics 2023-08, Vol.39 (4), p.2603-2622 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aiming to develop a more robust and intelligent heterogeneous system for adversarial catching in security and rescue tasks, in this article, we discuss the specialities of applying asymmetric self-play and curriculum learning techniques to deal with the increasing heterogeneity and number of different robots in modern heterogeneous multirobot systems (HMRS). Our method, based on actor-critic multiagent reinforcement learning, provides a framework that can enable cooperative behaviors among heterogeneous multirobot teams. This leads to the development of an HMRS for complex catching scenarios that involve several robot teams and real-world constraints. We conduct simulated experiments to evaluate different mechanisms' influence on our method's performance, and real-world experiments to assess our system's performance in complex real-world catching problems. In addition, a bridging study is conducted to compare our method with a state-of-the-art method called S2M2 in heterogeneous catching problems, and our method performs better in adversarial settings. As a result, we show that the proposed framework, through fusing asymmetric self-play and curriculum learning during training, is able to successfully complete the HMRS catching task under realistic constraints in both simulation and the real world, thus providing a direction for future large-scale intelligent security & rescue HMRS. |
---|---|
ISSN: | 1552-3098 1941-0468 |
DOI: | 10.1109/TRO.2023.3257541 |