Loading…
A Fast Distributed Algorithm for Large-Scale Demand Response Aggregation
A major challenge to implementing residential demand response is that of aligning the objectives of many households, each of which aims to minimize its payments and maximize its comfort level, while balancing this with the objectives of an aggregator that aims to minimize the cost of electricity pur...
Saved in:
Published in: | IEEE transactions on smart grid 2016-07, Vol.7 (4), p.2094-2107 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A major challenge to implementing residential demand response is that of aligning the objectives of many households, each of which aims to minimize its payments and maximize its comfort level, while balancing this with the objectives of an aggregator that aims to minimize the cost of electricity purchased in a pooled wholesale market. This paper presents a fast distributed algorithm for aggregating a large number of households with a mixture of discrete and continuous energy levels. A distinctive feature of the method in this paper is that the nonconvex demand response (DR) problem is decomposed in terms of households as opposed to devices, which allows incorporating more intricate couplings between energy storage devices, appliances, and distributed energy resources. The proposed method is a fast distributed algorithm applied to the double smoothed dual function of the adopted DR model. The method is tested on systems with up to 2560 households, each with 10 devices on average. The proposed algorithm is designed to terminate in 60 iterations irrespective of system size, which can be ideal for an on-line version of this problem. Moreover, numerical results show that with minimal parameter tuning, the algorithm exhibits a very similar convergence behavior throughout the studied systems and converges to near-optimal solutions, which corroborates its scalability. |
---|---|
ISSN: | 1949-3053 1949-3061 |
DOI: | 10.1109/TSG.2016.2536740 |