Loading…

Distributed Three-Phase Power Flow for AC/DC Hybrid Networked Microgrids Considering Converter Limiting Constraints

In three-phase AC/DC hybrid networked microgrids (NMGs), the operational limits of AC/DC interconnected converters and distributed generator (DG) interface inverters increase the non-convexity of the power flow model, and conventional distributed power flow (DPF) algorithms based on heuristic rule m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2022-05, Vol.13 (3), p.1691-1708
Main Authors: Ju, Yuntao, Liu, Wenwu, Zhang, Zifeng, Zhang, Ruosi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In three-phase AC/DC hybrid networked microgrids (NMGs), the operational limits of AC/DC interconnected converters and distributed generator (DG) interface inverters increase the non-convexity of the power flow model, and conventional distributed power flow (DPF) algorithms based on heuristic rule may encounter convergence problems when processing limit. This paper proposed a fully DPF calculation method that can robustly handle the non-smooth reactive power limits of converters and non-smooth voltage regulation of step voltage regulators, also reducing the model dependence on the initial values. In this algorithm, the non-smooth constraints were converted into smooth functions, and based on a bi-level augmented Lagrangian alternating direction inexact Newton (ALADIN) method with the second-order convergence rate the original DPF problem was transformed into the problem of distributed step increment optimization. Accurate power flow results can be obtained by exchanging boundary information between microgrids, and the proposed algorithm can converge rapidly with step increment optimization at the second level. Numerical experiments demonstrated the accuracy, convergence, and efficiency of the proposed method.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2022.3140212