Loading…

A Multimodal Human-Robot Interface to Drive a Neuroprosthesis for Tremor Management

Tremor is the most prevalent movement disorder, and its incidence is increasing with aging. In spite of the numerous therapeutic solutions available, 65% of those suffering from upper limb tremor report serious difficulties during their daily living. This gives rise to research on different treatmen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on human-machine systems 2012-11, Vol.42 (6), p.1159-1168
Main Authors: Gallego, J. A., Ibanez, J., Dideriksen, J. L., Serrano, J. I., del Castillo, M. D., Farina, D., Rocon, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tremor is the most prevalent movement disorder, and its incidence is increasing with aging. In spite of the numerous therapeutic solutions available, 65% of those suffering from upper limb tremor report serious difficulties during their daily living. This gives rise to research on different treatment alternatives, amongst which wearable robots that apply selective mechanical loads constitute an appealing approach. In this context, the current work presents a multimodal human-robot interface to drive a neuroprosthesis for tremor management. Our approach relies on the precise characterization of the tremor to modulate a functional electrical stimulation system that compensates for it. The neuroprosthesis is triggered by the detection of the intention to move derived from the analysis of electroencephalographic activity, which provides a natural interface with the user. When a prediction is delivered, surface electromyography serves to detect the actual onset of the tremor in the presence of volitional activity. This information in turn triggers the stimulation, which relies on tremor parameters-amplitude and frequency-derived from a pair of inertial sensors that record the kinematics of the affected joint. Surface electromyography also yields a first characterization of the tremor, together with precise information on the preferred stimulation site. Apart from allowing for an optimized performance of the system, our multimodal approach permits the implementation of redundant methods to both enhance the reliability of the system and adapt to the specific needs of different users. Results with a representative group of patients illustrate the performance of the interface presented here and demonstrate its feasibility.
ISSN:1094-6977
2168-2291
1558-2442
2168-2305
DOI:10.1109/TSMCC.2012.2200101