Loading…
Two-Dimensional Multivariate Parametric Models for Radar Applications-Part II: Maximum-Entropy Extensions for Hermitian-Block Matrices
In a series of two papers, a new class of parametric models for two-dimensional multivariate (matrix-valued, space-time) adaptive processing is introduced. This class is based on the maximum-entropy extension and/or completion of partially specified matrix-valued Hermitian covariance matrices in bot...
Saved in:
Published in: | IEEE transactions on signal processing 2008-11, Vol.56 (11), p.5527-5539 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a series of two papers, a new class of parametric models for two-dimensional multivariate (matrix-valued, space-time) adaptive processing is introduced. This class is based on the maximum-entropy extension and/or completion of partially specified matrix-valued Hermitian covariance matrices in both the space and time dimensions. The first paper considered the more restricted class of Hermitian Toeplitz-block covariance matrices that model stationary clutter. This second paper deals with the more general class of Hermitian-block covariance matrices that model nonstationary clutter. For our recently proposed 2-D time-varying autoregressive (TVAR) model, we derive optimal and computationally practical suboptimal methods for calculating such parametric models. The maximum-likelihood covariance matrix estimate for the 2-D TVAR model is also derived. The efficacy of the introduced models is illustrated by signal-to-interference-plus-noise ratio (SINR) degradation results obtained when applying the covariance matrix models to space-time adaptive processing filter design, compared with the true clutter covariance matrix provided by the DARPA KASSPER dataset. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2008.929867 |