Loading…

Stationary Signal Processing on Graphs

Graphs are a central tool in machine learning and information processing as they allow to conveniently capture the structure of complex datasets. In this context, it is of high importance to develop flexible models of signals defined over graphs or networks. In this paper, we generalize the traditio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2017-07, Vol.65 (13), p.3462-3477
Main Authors: Perraudin, Nathanael, Vandergheynst, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphs are a central tool in machine learning and information processing as they allow to conveniently capture the structure of complex datasets. In this context, it is of high importance to develop flexible models of signals defined over graphs or networks. In this paper, we generalize the traditional concept of wide sense stationarity to signals defined over the vertices of arbitrary weighted undirected graphs. We show that stationarity is expressed through the graph localization operator reminiscent of translation. We prove that stationary graph signals are characterized by a well-defined power spectral density that can be efficiently estimated even for large graphs. We leverage this new concept to derive Wiener-type estimation procedures of noisy and partially observed signals and illustrate the performance of this new model for denoising and regression.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2017.2690388