Loading…

Free-hand ultrasound scanning approaches for volume quantification of the mouse heart left ventricle

Two approaches for free-hand motion tracking that enable volumetric quantification of the murine heart were investigated. One approach used an instrumented, multijointed articulated arm attached to a 14 MHz ultrasound transducer array. A second approach used an E-beam transducer - a modified linear...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2007-05, Vol.54 (5), p.966-977
Main Authors: Garson, C.D., Yinbo Li, Hossack, J.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two approaches for free-hand motion tracking that enable volumetric quantification of the murine heart were investigated. One approach used an instrumented, multijointed articulated arm attached to a 14 MHz ultrasound transducer array. A second approach used an E-beam transducer - a modified linear transducer array containing a main imaging array adjacent to three perpendicular tracking arrays. Motion between successive B-mode image frames was computed by tracking image speckle in each tracking array. Both tracking systems produced accurate results in a phantom validation study (4.50% error and 3.75% error for estimates derived using the articulated arm and E-beam tracking techniques, respectively). The tracking approaches also were tested in vivo on three mice. Results were compared to values obtained by mounting each mouse on a micromanipulator, adjusting its position by 0-5-mm increments, and acquiring B-mode images using a high-resolution ultrasound scanner. Left ventricular end diastolic volume (LVEDV) estimates differed from values obtained using the high-resolution scanner by a mean error of 18.2% and 2.60% for eight scans conducted on each of two mice using the articulated arm, and a mean error of 13.6%, 6.53%, and 12.58% for eight scans conducted on each of three mice using the E-beam
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2007.342