Loading…

Heterogeneous Crowd Simulation Using Parametric Reinforcement Learning

Agent-based synthetic crowd simulation affords the cost-effective large-scale simulation and animation of interacting digital humans. Model-based approaches have successfully generated a plethora of simulators with a variety of foundations. However, prior approaches have been based on statically def...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2023-04, Vol.29 (4), p.2036-2052
Main Authors: Hu, Kaidong, Haworth, Brandon, Berseth, Glen, Pavlovic, Vladimir, Faloutsos, Petros, Kapadia, Mubbasir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Agent-based synthetic crowd simulation affords the cost-effective large-scale simulation and animation of interacting digital humans. Model-based approaches have successfully generated a plethora of simulators with a variety of foundations. However, prior approaches have been based on statically defined models predicated on simplifying assumptions, limited video-based datasets, or homogeneous policies. Recent works have applied reinforcement learning to learn policies for navigation. However, these approaches may learn static homogeneous rules, are typically limited in their generalization to trained scenarios, and limited in their usability in synthetic crowd domains. In this article, we present a multi-agent reinforcement learning-based approach that learns a parametric predictive collision avoidance and steering policy. We show that training over a parameter space produces a flexible model across crowd configurations. That is, our goal-conditioned approach learns a parametric policy that affords heterogeneous synthetic crowds. We propose a model-free approach without centralization of internal agent information, control signals, or agent communication. The model is extensively evaluated. The results show policy generalization across unseen scenarios, agent parameters, and out-of-distribution parameterizations. The learned model has comparable computational performance to traditional methods. Qualitatively the model produces both expected (laminar flow, shuffling, bottleneck) and unexpected (side-stepping) emergent qualitative behaviours, and quantitatively the approach is performant across measures of movement quality.
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2021.3139031