Loading…

Evolutionary-Algorithm-Assisted Joint Channel Estimation and Turbo Multiuser Detection/Decoding for OFDM/SDMA

The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantita...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2014-03, Vol.63 (3), p.1204-1222
Main Authors: Jiankang Zhang, Sheng Chen, Xiaomin Mu, Hanzo, Lajos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of evolutionary algorithms (EAs), such as genetic algorithms (GAs), repeated weighted boosting search (RWBS), particle swarm optimization (PSO), and differential evolution algorithms (DEAs), have stimulated wide interests in the communication research community. However, the quantitative performance-versus-complexity comparison of GA, RWBS, PSO, and DEA techniques applied to the joint channel estimation (CE) and turbo multiuser detection (MUD)/decoding in the context of orthogonal frequency-division multiplexing/space-division multiple-access systems is a challenging problem, which has to consider both the CE problem formulated over a continuous search space and the MUD optimization problem defined over a discrete search space. We investigate the capability of the GA, RWBS, PSO, and DEA to achieve optimal solutions at an affordable complexity in this challenging application. Our study demonstrates that the EA-assisted joint CE and turbo MUD/decoder is capable of approaching both the Cramér-Rao lower bound of the optimal CE and the bit error ratio (BER) performance of the idealized optimal maximum-likelihood (ML) turbo MUD/decoder associated with perfect channel state information, respectively, despite imposing only a fraction of the idealized turbo ML-MUD/decoder's complexity.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2013.2283069