Loading…

Fast Beamforming Design via Deep Learning

Beamforming is considered as one of the most important techniques for designing advanced multiple-input and multiple-output (MIMO) systems. Among existing design criterions, sum rate maximization (SRM) under a total power constraint is a challenge due to its nonconvexity. Existing techniques for the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2020-01, Vol.69 (1), p.1065-1069
Main Authors: Huang, Hao, Peng, Yang, Yang, Jie, Xia, Wenchao, Gui, Guan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Beamforming is considered as one of the most important techniques for designing advanced multiple-input and multiple-output (MIMO) systems. Among existing design criterions, sum rate maximization (SRM) under a total power constraint is a challenge due to its nonconvexity. Existing techniques for the SRM problem only obtain local optimal solutions but require huge amount of computation due to their complex matrix operations and iterations. Unlike these conventional methods, we propose a deep learning based fast beamforming design method without complex operations and iterations. Specifically, we first derive a heuristic solution structure of the downlink beamforming through the virtual equivalent uplink channel based on optimum MMSE receiver which separates the problem into power allocation and virtual uplink beamforming (VUB) design. Next, beamforming prediction network (BPNet) is designed to perform the joint optimization of power allocation and VUB design. Moreover, the BPNet is trained offline using two-step training strategy. Simulation results demonstrate that our proposed method is fast while obtains the comparable performance to the state-of-the-art method.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2019.2949122