Loading…

Optimizing Age of Information Through Aerial Reconfigurable Intelligent Surfaces: A Deep Reinforcement Learning Approach

We investigate the benefits of integrating unmanned aerial vehicles (UAVs) with reconfigurable intelligent surface (RIS) elements to passively relay information sampled by Internet of Things devices (IoTDs) to the base station (BS). In order to maintain the freshness of relayed information, an optim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2021-04, Vol.70 (4), p.3978-3983
Main Authors: Samir, Moataz, Elhattab, Mohamed, Assi, Chadi, Sharafeddine, Sanaa, Ghrayeb, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-191e7830a14991afaec5bb4b6732462723710398ee6558c0b2594696fdec6a1c3
cites cdi_FETCH-LOGICAL-c291t-191e7830a14991afaec5bb4b6732462723710398ee6558c0b2594696fdec6a1c3
container_end_page 3983
container_issue 4
container_start_page 3978
container_title IEEE transactions on vehicular technology
container_volume 70
creator Samir, Moataz
Elhattab, Mohamed
Assi, Chadi
Sharafeddine, Sanaa
Ghrayeb, Ali
description We investigate the benefits of integrating unmanned aerial vehicles (UAVs) with reconfigurable intelligent surface (RIS) elements to passively relay information sampled by Internet of Things devices (IoTDs) to the base station (BS). In order to maintain the freshness of relayed information, an optimization problem with the objective of minimizing the expected sum Age-of-Information (AoI) is formulated to optimize the altitude of the UAV, the communication schedule, and phases-shift of RIS elements. In the absence of prior knowledge of the activation pattern of the IoTDs, proximal policy optimization algorithm is developed to solve this mixed-integer non-convex optimization problem. Numerical results show that our proposed algorithm outperforms all others in terms of AoI.
doi_str_mv 10.1109/TVT.2021.3063953
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVT_2021_3063953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9371415</ieee_id><sourcerecordid>2522215094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-191e7830a14991afaec5bb4b6732462723710398ee6558c0b2594696fdec6a1c3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsH7cBS8LnlN39iPteCt-FgoFrV7DZp2kW9IkbhJQ_3q3VjwNw_zee8Nj7ALEGEDg9eptNZZCwliJVKFRB2wEqDBBZfCQjYSAaYJGm2N20nWbuGqNMGKfy7b3W__t65LPSuJNwed10YSt7X1T89U6NEO55jMK3lb8mVxTF74cgs0rimRPVeVLqnv-MoTCOupu-IzfEbWR9TsjR9vdeUE21L8hbRsa69Zn7KiwVUfnf_OUvT7cr26fksXycX47WyROIvQJINBkqoQFjQi2sORMnus8nSipUzmRagJC4ZQoNWbqRC4N6hTT4p1casGpU3a1942xHwN1fbZphlDHyEwaKSUYgTpSYk-50HRdoCJrg9_a8JWByHb9ZrHfbNdv9tdvlFzuJZ6I_nGM_2gw6geVjXb_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522215094</pqid></control><display><type>article</type><title>Optimizing Age of Information Through Aerial Reconfigurable Intelligent Surfaces: A Deep Reinforcement Learning Approach</title><source>IEEE Xplore (Online service)</source><creator>Samir, Moataz ; Elhattab, Mohamed ; Assi, Chadi ; Sharafeddine, Sanaa ; Ghrayeb, Ali</creator><creatorcontrib>Samir, Moataz ; Elhattab, Mohamed ; Assi, Chadi ; Sharafeddine, Sanaa ; Ghrayeb, Ali</creatorcontrib><description>We investigate the benefits of integrating unmanned aerial vehicles (UAVs) with reconfigurable intelligent surface (RIS) elements to passively relay information sampled by Internet of Things devices (IoTDs) to the base station (BS). In order to maintain the freshness of relayed information, an optimization problem with the objective of minimizing the expected sum Age-of-Information (AoI) is formulated to optimize the altitude of the UAV, the communication schedule, and phases-shift of RIS elements. In the absence of prior knowledge of the activation pattern of the IoTDs, proximal policy optimization algorithm is developed to solve this mixed-integer non-convex optimization problem. Numerical results show that our proposed algorithm outperforms all others in terms of AoI.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2021.3063953</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; AoI ; Computational geometry ; Convexity ; Delays ; Fading channels ; Internet of Things ; IoT ; Mixed integer ; Optimization ; PPO ; Reconfigurable intelligent surfaces ; Relays ; Reliability ; RIS ; Schedules ; scheduling ; UAV altitude ; Unmanned aerial vehicles ; Wireless networks</subject><ispartof>IEEE transactions on vehicular technology, 2021-04, Vol.70 (4), p.3978-3983</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-191e7830a14991afaec5bb4b6732462723710398ee6558c0b2594696fdec6a1c3</citedby><cites>FETCH-LOGICAL-c291t-191e7830a14991afaec5bb4b6732462723710398ee6558c0b2594696fdec6a1c3</cites><orcidid>0000-0002-6808-5886 ; 0000-0001-6548-1624 ; 0000-0002-3161-1846 ; 0000-0001-7682-9972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9371415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Samir, Moataz</creatorcontrib><creatorcontrib>Elhattab, Mohamed</creatorcontrib><creatorcontrib>Assi, Chadi</creatorcontrib><creatorcontrib>Sharafeddine, Sanaa</creatorcontrib><creatorcontrib>Ghrayeb, Ali</creatorcontrib><title>Optimizing Age of Information Through Aerial Reconfigurable Intelligent Surfaces: A Deep Reinforcement Learning Approach</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>We investigate the benefits of integrating unmanned aerial vehicles (UAVs) with reconfigurable intelligent surface (RIS) elements to passively relay information sampled by Internet of Things devices (IoTDs) to the base station (BS). In order to maintain the freshness of relayed information, an optimization problem with the objective of minimizing the expected sum Age-of-Information (AoI) is formulated to optimize the altitude of the UAV, the communication schedule, and phases-shift of RIS elements. In the absence of prior knowledge of the activation pattern of the IoTDs, proximal policy optimization algorithm is developed to solve this mixed-integer non-convex optimization problem. Numerical results show that our proposed algorithm outperforms all others in terms of AoI.</description><subject>Algorithms</subject><subject>AoI</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Delays</subject><subject>Fading channels</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Mixed integer</subject><subject>Optimization</subject><subject>PPO</subject><subject>Reconfigurable intelligent surfaces</subject><subject>Relays</subject><subject>Reliability</subject><subject>RIS</subject><subject>Schedules</subject><subject>scheduling</subject><subject>UAV altitude</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless networks</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRsH7cBS8LnlN39iPteCt-FgoFrV7DZp2kW9IkbhJQ_3q3VjwNw_zee8Nj7ALEGEDg9eptNZZCwliJVKFRB2wEqDBBZfCQjYSAaYJGm2N20nWbuGqNMGKfy7b3W__t65LPSuJNwed10YSt7X1T89U6NEO55jMK3lb8mVxTF74cgs0rimRPVeVLqnv-MoTCOupu-IzfEbWR9TsjR9vdeUE21L8hbRsa69Zn7KiwVUfnf_OUvT7cr26fksXycX47WyROIvQJINBkqoQFjQi2sORMnus8nSipUzmRagJC4ZQoNWbqRC4N6hTT4p1casGpU3a1942xHwN1fbZphlDHyEwaKSUYgTpSYk-50HRdoCJrg9_a8JWByHb9ZrHfbNdv9tdvlFzuJZ6I_nGM_2gw6geVjXb_</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Samir, Moataz</creator><creator>Elhattab, Mohamed</creator><creator>Assi, Chadi</creator><creator>Sharafeddine, Sanaa</creator><creator>Ghrayeb, Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6808-5886</orcidid><orcidid>https://orcid.org/0000-0001-6548-1624</orcidid><orcidid>https://orcid.org/0000-0002-3161-1846</orcidid><orcidid>https://orcid.org/0000-0001-7682-9972</orcidid></search><sort><creationdate>20210401</creationdate><title>Optimizing Age of Information Through Aerial Reconfigurable Intelligent Surfaces: A Deep Reinforcement Learning Approach</title><author>Samir, Moataz ; Elhattab, Mohamed ; Assi, Chadi ; Sharafeddine, Sanaa ; Ghrayeb, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-191e7830a14991afaec5bb4b6732462723710398ee6558c0b2594696fdec6a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>AoI</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Delays</topic><topic>Fading channels</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Mixed integer</topic><topic>Optimization</topic><topic>PPO</topic><topic>Reconfigurable intelligent surfaces</topic><topic>Relays</topic><topic>Reliability</topic><topic>RIS</topic><topic>Schedules</topic><topic>scheduling</topic><topic>UAV altitude</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samir, Moataz</creatorcontrib><creatorcontrib>Elhattab, Mohamed</creatorcontrib><creatorcontrib>Assi, Chadi</creatorcontrib><creatorcontrib>Sharafeddine, Sanaa</creatorcontrib><creatorcontrib>Ghrayeb, Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samir, Moataz</au><au>Elhattab, Mohamed</au><au>Assi, Chadi</au><au>Sharafeddine, Sanaa</au><au>Ghrayeb, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Age of Information Through Aerial Reconfigurable Intelligent Surfaces: A Deep Reinforcement Learning Approach</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>70</volume><issue>4</issue><spage>3978</spage><epage>3983</epage><pages>3978-3983</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>We investigate the benefits of integrating unmanned aerial vehicles (UAVs) with reconfigurable intelligent surface (RIS) elements to passively relay information sampled by Internet of Things devices (IoTDs) to the base station (BS). In order to maintain the freshness of relayed information, an optimization problem with the objective of minimizing the expected sum Age-of-Information (AoI) is formulated to optimize the altitude of the UAV, the communication schedule, and phases-shift of RIS elements. In the absence of prior knowledge of the activation pattern of the IoTDs, proximal policy optimization algorithm is developed to solve this mixed-integer non-convex optimization problem. Numerical results show that our proposed algorithm outperforms all others in terms of AoI.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2021.3063953</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6808-5886</orcidid><orcidid>https://orcid.org/0000-0001-6548-1624</orcidid><orcidid>https://orcid.org/0000-0002-3161-1846</orcidid><orcidid>https://orcid.org/0000-0001-7682-9972</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2021-04, Vol.70 (4), p.3978-3983
issn 0018-9545
1939-9359
language eng
recordid cdi_crossref_primary_10_1109_TVT_2021_3063953
source IEEE Xplore (Online service)
subjects Algorithms
AoI
Computational geometry
Convexity
Delays
Fading channels
Internet of Things
IoT
Mixed integer
Optimization
PPO
Reconfigurable intelligent surfaces
Relays
Reliability
RIS
Schedules
scheduling
UAV altitude
Unmanned aerial vehicles
Wireless networks
title Optimizing Age of Information Through Aerial Reconfigurable Intelligent Surfaces: A Deep Reinforcement Learning Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Age%20of%20Information%20Through%20Aerial%20Reconfigurable%20Intelligent%20Surfaces:%20A%20Deep%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Samir,%20Moataz&rft.date=2021-04-01&rft.volume=70&rft.issue=4&rft.spage=3978&rft.epage=3983&rft.pages=3978-3983&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2021.3063953&rft_dat=%3Cproquest_cross%3E2522215094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-191e7830a14991afaec5bb4b6732462723710398ee6558c0b2594696fdec6a1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2522215094&rft_id=info:pmid/&rft_ieee_id=9371415&rfr_iscdi=true