Loading…
Ultrahigh‐temperature tensile behaviors of ZrB 2 –SiC ceramics
ZrB 2 –SiC ceramics are the potential candidates for the ultrahigh‐temperature thermal protection materials of sharp‐bodied reentry and hypersonic vehicles. However, their ultrahigh‐temperature mechanical behaviors have been rarely reported. In the present work, an ultrahigh‐temperature testing meth...
Saved in:
Published in: | International journal of applied ceramic technology 2025-01, Vol.22 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ZrB 2 –SiC ceramics are the potential candidates for the ultrahigh‐temperature thermal protection materials of sharp‐bodied reentry and hypersonic vehicles. However, their ultrahigh‐temperature mechanical behaviors have been rarely reported. In the present work, an ultrahigh‐temperature testing method for the tensile properties of ceramics is proposed. The tensile behaviors of ZrB 2 –20 vol% SiC are studied up to 1950°C in air and to 2050°C in nitrogen atmosphere for the first time. The tensile stress–strain curves, Young's modulus, and tensile strength are obtained. The microstructure evolutions, including crystallization of sintering aids, grain recombination, and grain oxidation, are observed, and their effects on the tensile properties are analyzed. The mechanisms controlling the tensile behaviors at ultrahigh temperatures are revealed. The maximum operating temperature of ZrB 2 –SiC ceramics has been identified. |
---|---|
ISSN: | 1546-542X 1744-7402 |
DOI: | 10.1111/ijac.14901 |