Loading…

ON THE MORITA EQUIVALENCE OF TENSOR ALGEBRAS

We develop a notion of Morita equivalence for general C$^{\ast}$-correspondences over C$^{\ast}$-algebras. We show that if two correspondences are Morita equivalent, then the tensor algebras built from them are strongly Morita equivalent in the sense developed by Blecher, Muhly and Paulsen. Also, th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the London Mathematical Society 2000-07, Vol.81 (1), p.113-168
Main Authors: MUHLY, PAUL S., SOLEL, BARUCH
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We develop a notion of Morita equivalence for general C$^{\ast}$-correspondences over C$^{\ast}$-algebras. We show that if two correspondences are Morita equivalent, then the tensor algebras built from them are strongly Morita equivalent in the sense developed by Blecher, Muhly and Paulsen. Also, the Toeplitz algebras are strongly Morita equivalent in the sense of Rieffel, as are the Cuntz--Pimsner algebras. Conversely, if the tensor algebras are strongly Morita equivalent, and if the correspondences are aperiodic in a fashion that generalizes the notion of aperiodicity for automorphisms of C$^{\ast}$-algebras, then the correspondences are Morita equivalent. This generalizes a venerated theorem of Arveson on algebraic conjugacy invariants for ergodic, measure-preserving transformations. The notion of aperiodicity, which also generalizes the concept of full Connes spectrum for automorphisms, is explored; its role in the ideal theory of tensor algebras and in the theory of their automorphisms is investigated. 1991 Mathematics Subject Classification: 46H10, 46H20, 46H99, 46M99, 47D15, 47D25.
ISSN:0024-6115
1460-244X
DOI:10.1112/S0024611500012405