Loading…
Helson zeta functions for characters with finitely many values
We show that the analytic continuations of Helson zeta functions ζχ(s)=∑1∞χ(n)n−s$ \zeta _\chi (s)= \sum _1^{\infty }\chi (n)n^{-s}$ can have essentially arbitrary poles and zeroes in the strip 21/40
Saved in:
Published in: | The Bulletin of the London Mathematical Society 2023-10, Vol.55 (5), p.2233-2241 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that the analytic continuations of Helson zeta functions ζχ(s)=∑1∞χ(n)n−s$ \zeta _\chi (s)= \sum _1^{\infty }\chi (n)n^{-s}$ can have essentially arbitrary poles and zeroes in the strip 21/40 |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms.12847 |