Loading…

Commuting tuple of multiplication operators homogeneous under the unitary group

Let U(d)$\mathcal {U}(d)$ be the group of d×d$d\times d$ unitary matrices. We find conditions to ensure that a U(d)$\mathcal {U}(d)$‐homogeneous d$d$‐tuple T$\bm{T}$ is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space HK(Bd,Cn)⊆Hol(Bd,Cn)$\m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the London Mathematical Society 2024-04, Vol.109 (4), p.n/a
Main Authors: Ghara, Soumitra, Kumar, Surjit, Misra, Gadadhar, Pramanick, Paramita
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let U(d)$\mathcal {U}(d)$ be the group of d×d$d\times d$ unitary matrices. We find conditions to ensure that a U(d)$\mathcal {U}(d)$‐homogeneous d$d$‐tuple T$\bm{T}$ is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space HK(Bd,Cn)⊆Hol(Bd,Cn)$\mathcal {H}_K(\mathbb {B}_d, \mathbb {C}^n) \subseteq \mbox{\rm Hol}(\mathbb {B}_d, \mathbb {C}^n)$, n=dim∩j=1dkerTj∗$n= \dim \cap _{j=1}^d \ker T^*_{j}$. We describe this class of U(d)$\mathcal {U}(d)$‐homogeneous operators, equivalently, nonnegative kernels K$K$ quasi‐invariant under the action of U(d)$\mathcal {U}(d)$. We classify quasi‐invariant kernels K$K$ transforming under U(d)$\mathcal {U}(d)$ with two specific choice of multipliers. A crucial ingredient of the proof is that the group SU(d)$SU(d)$ has exactly two inequivalent irreducible unitary representations of dimension d$d$ and none in dimensions 2,…,d−1$2, \ldots , d-1$, d⩾3$d\geqslant 3$. We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12890