Loading…

Commuting tuple of multiplication operators homogeneous under the unitary group

Let U(d)$\mathcal {U}(d)$ be the group of d×d$d\times d$ unitary matrices. We find conditions to ensure that a U(d)$\mathcal {U}(d)$‐homogeneous d$d$‐tuple T$\bm{T}$ is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space HK(Bd,Cn)⊆Hol(Bd,Cn)$\m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the London Mathematical Society 2024-04, Vol.109 (4), p.n/a
Main Authors: Ghara, Soumitra, Kumar, Surjit, Misra, Gadadhar, Pramanick, Paramita
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2320-e459ae03d3402b7210a58e8293d14ea70f29e3d788b1538ad1453cb34cf49ab3
container_end_page n/a
container_issue 4
container_start_page
container_title Journal of the London Mathematical Society
container_volume 109
creator Ghara, Soumitra
Kumar, Surjit
Misra, Gadadhar
Pramanick, Paramita
description Let U(d)$\mathcal {U}(d)$ be the group of d×d$d\times d$ unitary matrices. We find conditions to ensure that a U(d)$\mathcal {U}(d)$‐homogeneous d$d$‐tuple T$\bm{T}$ is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space HK(Bd,Cn)⊆Hol(Bd,Cn)$\mathcal {H}_K(\mathbb {B}_d, \mathbb {C}^n) \subseteq \mbox{\rm Hol}(\mathbb {B}_d, \mathbb {C}^n)$, n=dim∩j=1dkerTj∗$n= \dim \cap _{j=1}^d \ker T^*_{j}$. We describe this class of U(d)$\mathcal {U}(d)$‐homogeneous operators, equivalently, nonnegative kernels K$K$ quasi‐invariant under the action of U(d)$\mathcal {U}(d)$. We classify quasi‐invariant kernels K$K$ transforming under U(d)$\mathcal {U}(d)$ with two specific choice of multipliers. A crucial ingredient of the proof is that the group SU(d)$SU(d)$ has exactly two inequivalent irreducible unitary representations of dimension d$d$ and none in dimensions 2,…,d−1$2, \ldots , d-1$, d⩾3$d\geqslant 3$. We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.
doi_str_mv 10.1112/jlms.12890
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2320-e459ae03d3402b7210a58e8293d14ea70f29e3d788b1538ad1453cb34cf49ab3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRMFYv_oI9C6kzu5smOUrwk0oP9h42yaTdkmTD7gbpvze1nj3NMDzz8vIwdo-wRETxeOh6v0SR5XDBIlSrPE7TBC5ZBCBUvEJIr9mN9wcAlAgiYpvC9v0UzLDjYRo74rbl_dQFM3am1sHYgduRnA7Web63vd3RQHbyfBoacjzsad5M0O7Id85O4y27anXn6e5vLtj25XlbvMXrzet78bSOayEFxKSSXBPIRioQVSoQdJJRJnLZoCKdQitykk2aZRUmMtPzNZF1JVXdqlxXcsEezrG1s947asvRmX5uUSKUJxPlyUT5a2KG8Qx_m46O_5Dlx_rz6_zzA8wpYpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Commuting tuple of multiplication operators homogeneous under the unitary group</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ghara, Soumitra ; Kumar, Surjit ; Misra, Gadadhar ; Pramanick, Paramita</creator><creatorcontrib>Ghara, Soumitra ; Kumar, Surjit ; Misra, Gadadhar ; Pramanick, Paramita</creatorcontrib><description>Let U(d)$\mathcal {U}(d)$ be the group of d×d$d\times d$ unitary matrices. We find conditions to ensure that a U(d)$\mathcal {U}(d)$‐homogeneous d$d$‐tuple T$\bm{T}$ is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space HK(Bd,Cn)⊆Hol(Bd,Cn)$\mathcal {H}_K(\mathbb {B}_d, \mathbb {C}^n) \subseteq \mbox{\rm Hol}(\mathbb {B}_d, \mathbb {C}^n)$, n=dim∩j=1dkerTj∗$n= \dim \cap _{j=1}^d \ker T^*_{j}$. We describe this class of U(d)$\mathcal {U}(d)$‐homogeneous operators, equivalently, nonnegative kernels K$K$ quasi‐invariant under the action of U(d)$\mathcal {U}(d)$. We classify quasi‐invariant kernels K$K$ transforming under U(d)$\mathcal {U}(d)$ with two specific choice of multipliers. A crucial ingredient of the proof is that the group SU(d)$SU(d)$ has exactly two inequivalent irreducible unitary representations of dimension d$d$ and none in dimensions 2,…,d−1$2, \ldots , d-1$, d⩾3$d\geqslant 3$. We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12890</identifier><language>eng</language><ispartof>Journal of the London Mathematical Society, 2024-04, Vol.109 (4), p.n/a</ispartof><rights>2024 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2320-e459ae03d3402b7210a58e8293d14ea70f29e3d788b1538ad1453cb34cf49ab3</cites><orcidid>0009-0000-5903-0464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghara, Soumitra</creatorcontrib><creatorcontrib>Kumar, Surjit</creatorcontrib><creatorcontrib>Misra, Gadadhar</creatorcontrib><creatorcontrib>Pramanick, Paramita</creatorcontrib><title>Commuting tuple of multiplication operators homogeneous under the unitary group</title><title>Journal of the London Mathematical Society</title><description>Let U(d)$\mathcal {U}(d)$ be the group of d×d$d\times d$ unitary matrices. We find conditions to ensure that a U(d)$\mathcal {U}(d)$‐homogeneous d$d$‐tuple T$\bm{T}$ is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space HK(Bd,Cn)⊆Hol(Bd,Cn)$\mathcal {H}_K(\mathbb {B}_d, \mathbb {C}^n) \subseteq \mbox{\rm Hol}(\mathbb {B}_d, \mathbb {C}^n)$, n=dim∩j=1dkerTj∗$n= \dim \cap _{j=1}^d \ker T^*_{j}$. We describe this class of U(d)$\mathcal {U}(d)$‐homogeneous operators, equivalently, nonnegative kernels K$K$ quasi‐invariant under the action of U(d)$\mathcal {U}(d)$. We classify quasi‐invariant kernels K$K$ transforming under U(d)$\mathcal {U}(d)$ with two specific choice of multipliers. A crucial ingredient of the proof is that the group SU(d)$SU(d)$ has exactly two inequivalent irreducible unitary representations of dimension d$d$ and none in dimensions 2,…,d−1$2, \ldots , d-1$, d⩾3$d\geqslant 3$. We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRMFYv_oI9C6kzu5smOUrwk0oP9h42yaTdkmTD7gbpvze1nj3NMDzz8vIwdo-wRETxeOh6v0SR5XDBIlSrPE7TBC5ZBCBUvEJIr9mN9wcAlAgiYpvC9v0UzLDjYRo74rbl_dQFM3am1sHYgduRnA7Web63vd3RQHbyfBoacjzsad5M0O7Id85O4y27anXn6e5vLtj25XlbvMXrzet78bSOayEFxKSSXBPIRioQVSoQdJJRJnLZoCKdQitykk2aZRUmMtPzNZF1JVXdqlxXcsEezrG1s947asvRmX5uUSKUJxPlyUT5a2KG8Qx_m46O_5Dlx_rz6_zzA8wpYpA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Ghara, Soumitra</creator><creator>Kumar, Surjit</creator><creator>Misra, Gadadhar</creator><creator>Pramanick, Paramita</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-5903-0464</orcidid></search><sort><creationdate>202404</creationdate><title>Commuting tuple of multiplication operators homogeneous under the unitary group</title><author>Ghara, Soumitra ; Kumar, Surjit ; Misra, Gadadhar ; Pramanick, Paramita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2320-e459ae03d3402b7210a58e8293d14ea70f29e3d788b1538ad1453cb34cf49ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghara, Soumitra</creatorcontrib><creatorcontrib>Kumar, Surjit</creatorcontrib><creatorcontrib>Misra, Gadadhar</creatorcontrib><creatorcontrib>Pramanick, Paramita</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghara, Soumitra</au><au>Kumar, Surjit</au><au>Misra, Gadadhar</au><au>Pramanick, Paramita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commuting tuple of multiplication operators homogeneous under the unitary group</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2024-04</date><risdate>2024</risdate><volume>109</volume><issue>4</issue><epage>n/a</epage><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>Let U(d)$\mathcal {U}(d)$ be the group of d×d$d\times d$ unitary matrices. We find conditions to ensure that a U(d)$\mathcal {U}(d)$‐homogeneous d$d$‐tuple T$\bm{T}$ is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space HK(Bd,Cn)⊆Hol(Bd,Cn)$\mathcal {H}_K(\mathbb {B}_d, \mathbb {C}^n) \subseteq \mbox{\rm Hol}(\mathbb {B}_d, \mathbb {C}^n)$, n=dim∩j=1dkerTj∗$n= \dim \cap _{j=1}^d \ker T^*_{j}$. We describe this class of U(d)$\mathcal {U}(d)$‐homogeneous operators, equivalently, nonnegative kernels K$K$ quasi‐invariant under the action of U(d)$\mathcal {U}(d)$. We classify quasi‐invariant kernels K$K$ transforming under U(d)$\mathcal {U}(d)$ with two specific choice of multipliers. A crucial ingredient of the proof is that the group SU(d)$SU(d)$ has exactly two inequivalent irreducible unitary representations of dimension d$d$ and none in dimensions 2,…,d−1$2, \ldots , d-1$, d⩾3$d\geqslant 3$. We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.</abstract><doi>10.1112/jlms.12890</doi><tpages>37</tpages><orcidid>https://orcid.org/0009-0000-5903-0464</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2024-04, Vol.109 (4), p.n/a
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_jlms_12890
source Wiley-Blackwell Read & Publish Collection
title Commuting tuple of multiplication operators homogeneous under the unitary group
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commuting%20tuple%20of%20multiplication%20operators%20homogeneous%20under%20the%20unitary%20group&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Ghara,%20Soumitra&rft.date=2024-04&rft.volume=109&rft.issue=4&rft.epage=n/a&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12890&rft_dat=%3Cwiley_cross%3EJLMS12890%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2320-e459ae03d3402b7210a58e8293d14ea70f29e3d788b1538ad1453cb34cf49ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true