Loading…

Soot Volume Fraction Profiles in Forced-Combusting Boundary Layers

A multiwavelength laser transmission technique is used to determine soot volume fraction fields and aproximate particle size distributions in a forced flow combusting boundary layer. Measurements are made in diffusion flames of polymethylmethacrylate (PMMA) and five liquid hydrocarbon fuels (n-hepta...

Full description

Saved in:
Bibliographic Details
Published in:Journal of heat transfer 1983-02, Vol.105 (1), p.159-165
Main Authors: Beier, R. A, Pagni, P. J
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A multiwavelength laser transmission technique is used to determine soot volume fraction fields and aproximate particle size distributions in a forced flow combusting boundary layer. Measurements are made in diffusion flames of polymethylmethacrylate (PMMA) and five liquid hydrocarbon fuels (n-heptane, iso-octane, cyclohexane, cyclohexene, and toluene) with ambient oxygen mass fractions in the range of 0.23 ≲ Y0∞ ≲ 0.50. Soot is observed in a region between the pyrolyzing fuel surface and the flame zone. Soot volume fraction increases monotonically with Y0∞, e.g., n-heptane and PMMA are similar with soot volume fractions, fν, ranging from fν ∼ 5 × 10−7 at Y0∞ = 0.23 to fν ∼ 5 × 10−6 at Y0∞ = 0.50. For an oxygen mass fraction the same as air, Y0∞ = 0.23, soot volume fractions are approximately the same as values previously reported in pool fires and a free combusting boundary layer. However, the shape of the fν profile changes with more soot near the flame in forced flow than in free flow due to the different y-velocity fields in these two systems. For all fuels tested, a most probable particle radius is between 20 nm and 80 nm, and does not appear to change substantially with location, fuel, or oxygen mass fraction.
ISSN:0022-1481
1528-8943
DOI:10.1115/1.3245535