Loading…

Vacuum compatibility of silver and titanium parts made using three-dimensional printing

Three-dimensional (3D) printing has many advantages over conventional machining techniques, and it is particularly well suited for rapid production of prototypes. This Shop Note reports pump-down curves for a small ultrahigh-vacuum chamber loaded with 3D-printed silver and titanium parts. Neither ma...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2014-03, Vol.32 (2), p.23201
Main Authors: Gans, Ashley R., Jobbins, Matthew M., Lee, David Y., Alex Kandel, S.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three-dimensional (3D) printing has many advantages over conventional machining techniques, and it is particularly well suited for rapid production of prototypes. This Shop Note reports pump-down curves for a small ultrahigh-vacuum chamber loaded with 3D-printed silver and titanium parts. Neither material showed any measurable adverse affect on the ultimate base pressure achieved, which was approximately 5 × 10−10 Torr. 3D-printed metals can therefore be considered suitable for select ultrahigh-vacuum applications.
ISSN:0734-2101
1520-8559
DOI:10.1116/1.4846195