Loading…
Band offsets in Sc2O3/ZnO heterostructures deposited by RF magnetron sputtering
ZnO is promising for a number of applications in light emission, sensors, and transparent conducting electronics, but its surface is susceptible to instabilities caused by atmospheric exposure. Thus, there is a need for stable passivation or gate dielectric layers that might obviate this issue. One...
Saved in:
Published in: | Journal of vacuum science and technology. B, Nanotechnology & microelectronics Nanotechnology & microelectronics, 2015-09, Vol.33 (5) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ZnO is promising for a number of applications in light emission, sensors, and transparent conducting electronics, but its surface is susceptible to instabilities caused by atmospheric exposure. Thus, there is a need for stable passivation or gate dielectric layers that might obviate this issue. One potential candidate is Sc2O3. The authors have measured the band offsets of sputtered Sc2O3 on both Zn- and O-terminated ZnO using x-ray photoelectron spectroscopy and obtained the bandgaps of the materials using reflection electron energy loss spectroscopy. The valence band offset was determined to be ∼1.67 ± 0.16 eV for Sc2O3 on Zn-terminated ZnO (bandgap 3.26 eV) and 1.59 ± 0.16 eV on O-terminated ZnO (bandgap 3.22 eV), i.e., similar within experimental error. The conduction band offset for Sc2O3/ZnO was then determined to be 4.92 eV. The Sc2O3/ZnO system has a staggered, type II alignment, meaning that it is not suitable for thin film transistors but it may still be useful for surface passivation. |
---|---|
ISSN: | 2166-2746 2166-2754 |
DOI: | 10.1116/1.4931035 |