Loading…

Strain-induced modulation of electronic structure in correlated Dirac semimetal Pv-CaIrO3 epitaxial thin films

Perovskite CaIrO 3 is theoretically predicted to be a Dirac node semimetal near the Mott transition, which possesses a considerable interplay between electron correlations and spin–orbit coupling. Electron correlations can significantly tune the behavior of relativistic Dirac fermions. Here, we have...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2024-05, Vol.42 (3)
Main Authors: Ding, Jianyang, Liu, Zhengtai, Liu, Jiayu, Yuan, Jian, Wei, Liyang, Jiang, Zhicheng, Yang, Yichen, Li, Chihao, Wang, Yilin, Guo, Yanfeng, Ye, Mao, Liu, Jishan, Shen, Dawei
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perovskite CaIrO 3 is theoretically predicted to be a Dirac node semimetal near the Mott transition, which possesses a considerable interplay between electron correlations and spin–orbit coupling. Electron correlations can significantly tune the behavior of relativistic Dirac fermions. Here, we have grown high-quality perovskite CaIrO 3 thin films on different substrates using oxide molecular beam epitaxy to modulate both electron correlations and Dirac electron states. Through in situ angle-resolved photoemission spectroscopy, we demonstrate a systematic evolution of the bandwidth and effective mass of J eff = 1 / 2 band in perovskite CaIrO 3 induced by strain. The bandwidth of the J eff = 1 / 2 band undergoes an evident increase under in-plane compressive strain, which could be attributed to the weakening of electron correlations. The compressive strain can potentially shift the position of the Dirac node relative to the Fermi level and play a vital role in the transition from hole-type to electron-type transport characteristics. Our work provides a feasible approach for manipulating the topological Dirac electron states by engineering the strength of electron correlations.
ISSN:0734-2101
1520-8559
DOI:10.1116/6.0003462