Loading…
Distribution constraining for combating mode collapse in generative adversarial networks
Image synthesis is a critical technique in the image processing field. Recently, generative adversarial networks (GANs) have played a significant role in synthesis tasks. However, the issue of mode collapse remains a major challenge in GANs, which limits their potential applications. We propose a me...
Saved in:
Published in: | Journal of electronic imaging 2023-07, Vol.32 (4), p.043029-043029 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Image synthesis is a critical technique in the image processing field. Recently, generative adversarial networks (GANs) have played a significant role in synthesis tasks. However, the issue of mode collapse remains a major challenge in GANs, which limits their potential applications. We propose a method to address the mode collapse problem. Our approach focuses on minimizing the divergence between the distributions of real and generated features, thereby reducing the learning pressure on the discriminator. An advantage of our method is that it does not require prior knowledge or manual design. Additionally, it can be easily incorporated into state-of-the-art frameworks across various domains. Experimental results demonstrate the effectiveness and competitive performance of our proposed method. |
---|---|
ISSN: | 1017-9909 1560-229X |
DOI: | 10.1117/1.JEI.32.4.043029 |