Loading…

Inactivation of Ca 2+ /H + Exchanger in Synechocystis sp. Strain PCC 6803 Promotes Cyanobacterial Calcification by Upregulating CO 2 -Concentrating Mechanisms

Cyanobacteria are important players in the global carbon cycle, accounting for approximately 25% of global CO 2 fixation. Their CO 2 -concentrating mechanisms (CCMs) are thought to play a key role in cyanobacterial calcification, but the mechanisms are not completely understood. In Synechocystis sp....

Full description

Saved in:
Bibliographic Details
Published in:Applied and environmental microbiology 2013-07, Vol.79 (13), p.4048-4055
Main Authors: Jiang, Hai-Bo, Cheng, Hui-Min, Gao, Kun-Shan, Qiu, Bao-Sheng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cyanobacteria are important players in the global carbon cycle, accounting for approximately 25% of global CO 2 fixation. Their CO 2 -concentrating mechanisms (CCMs) are thought to play a key role in cyanobacterial calcification, but the mechanisms are not completely understood. In Synechocystis sp. strain PCC 6803, a single Ca 2+ /H + exchanger (Slr1336) controls the Ca 2+ /H + exchange reaction. We knocked out the exchanger and investigated the effects on cyanobacterial calcification and CCMs. Inactivation of slr1336 significantly increased the calcification rate and decreased the zeta potential, indicating a relatively stronger Ca 2+ -binding ability. Some genes encoding CCM-related components showed increased expression levels, including the cmpA gene, which encodes the Ca 2+ -dependent HCO 3 − transporter BCT1. The transcript level of cmpA in the mutant was 30 times that in wild type. A Western blot analysis further confirmed that protein levels of CmpA were higher in the mutant than the wild type. Measurements of inorganic carbon fluxes and O 2 evolution proved that both the net HCO 3 − uptake rate and the BCT1 transporter supported photosynthetic rate in the slr1336 mutant were significantly higher than in the wild type. This would cause the mutant cells to liberate more OH − ions out of the cell and stimulate CaCO 3 precipitation in the microenvironment. We conclude that the mutation of the Ca 2+ /H + exchanger in Synechocystis promoted the cyanobacterial calcification process by upregulating CCMs, especially the BCT1 HCO 3 − transporter. These results shed new light on the mechanism by which CCM-facilitated photosynthesis promotes cyanobacterial calcification.
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.00681-13