Loading…

Evolution of Solar Active Regions Before Large Flares: Overview of the Events of 2010–2017

The paper presents a study of the evolution of the photospheric magnetic field of active regions (ARs) of the Sun in which flares (larger than the M9 class in the Geostationary Operational Environmental Satellite (GOES) X-ray classification) occurred in 2010–2017. The purpose of this paper is to det...

Full description

Saved in:
Bibliographic Details
Published in:Geomagnetism and aeronomy 2018-12, Vol.58 (8), p.1087-1096
Main Authors: Tlatov, A. G., Abramov-Maximov, V. E., Borovik, V. N., Opeikina, L. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper presents a study of the evolution of the photospheric magnetic field of active regions (ARs) of the Sun in which flares (larger than the M9 class in the Geostationary Operational Environmental Satellite (GOES) X-ray classification) occurred in 2010–2017. The purpose of this paper is to detect the precursors of flares. Thirteen ARs at a distance of not more than 45 degrees from the central meridian are selected for analysis out of 31 ARs in which flares larger than M9.0 were detected in the specified period. The magnetographic characteristics of the selected ARs are studied based on the Solar Dynamics Observatory (SDO) data. A flare index is proposed. It is calculated from the data of the Helioseismic and Magnetic Imager of SDO (SDO/HMI) and reflects the distance between regions of opposite magnetic polarity computed between the field boundaries by the threshold value. The analysis showed that a sharp increase in the flare index is detected in all the studied ARs 2–3 days before large flares. Flares larger than the M9.0 class occurred 5–20 h after the global or local maximum of the flare index. It is shown using the example of individual events that regions of the opposite polarity first converged and then relatively quickly separated from each other before large flares. The revealed features of evolution of ARs before large flares can be used to develop methods for predicting them.
ISSN:0016-7932
1555-645X
DOI:10.1134/S0016793218080170