Loading…
Conditions for a product-form stationary distribution of one queueing system with batch transfers and a disaster flow
We consider an open exponential network with two types of arrival flows at the network nodes: a message flow and a disaster flow. Messages arriving at the nodes form batches of customers of a random size. A disaster arrival at a node completely empties the queue at the node if it is nonempty and has...
Saved in:
Published in: | Problems of information transmission 2014, Vol.50 (1), p.106-116 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider an open exponential network with two types of arrival flows at the network nodes: a message flow and a disaster flow. Messages arriving at the nodes form batches of customers of a random size. A disaster arrival at a node completely empties the queue at the node if it is nonempty and has no effect otherwise. Customers are served in batches of a random size. After a batch is served at a node, the batch quits the network and, according to a routing matrix, either sends a message or a disaster to another node or does not send anything. We find conditions for the stationary distribution of the network state probabilities to be represented as a product of shifted geometric distributions. |
---|---|
ISSN: | 0032-9460 1608-3253 |
DOI: | 10.1134/S0032946014010074 |