Loading…
Affinor structures on vector bundles
An affinor structure is a generalization of the notion of an almost complex structure associated with a symplectic form on a manifold of even dimension for vector bundles of arbitrary rank. An affinor structure is the field of the automorphisms of the vector bundle preserving the exterior derivative...
Saved in:
Published in: | Siberian mathematical journal 2014-11, Vol.55 (6), p.1045-1055 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An affinor structure is a generalization of the notion of an almost complex structure associated with a symplectic form on a manifold of even dimension for vector bundles of arbitrary rank. An affinor structure is the field of the automorphisms of the vector bundle preserving the exterior derivative of some 1-form with radical of arbitrary dimension. The exterior derivative can be always defined on Lie algebroids, a special class of vector bundles. Therefore, the theory of affinor structures is considered on Lie algebroids. We show that the classical objects, such as a symplectic structure, a contact structure, and a Kähler structure, are particular cases of the general theory of affinor metric structures. |
---|---|
ISSN: | 0037-4466 1573-9260 |
DOI: | 10.1134/S003744661406007X |